Cho hai lực F1, F2. Biết \(\overrightarrow \) và \(\overrightarrow \) có cùng cường độ lực là 100 N, góc hợp bởi \(\overrightarrow \) và \(\overrightarrow \) là 120°. Khi đó cường độ lực tổng hợp ... (Toán học - Lớp 10)
Trần Đan Phương - 06/09/2024 00:10:44
Trong mặt phẳng tọa độ Oxy, cho ba điểm A(–1; –2), B(3; 2), C(4; –1). Biết rằng điểm E(a; b) di động trên đường thẳng AB sao cho \(\left| {2\overrightarrow {EA} + 3\overrightarrow {EB} - \overrightarrow {EC} } \right|\) đạt giá trị nhỏ nhất. Khi đó ... (Toán học - Lớp 10)
Tôi yêu Việt Nam - 06/09/2024 00:10:43
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(3; 4), B(2; 1), C(–1; –2). Cho M(x; y) trên đoạn thẳng BC sao cho SABC = 4SABM. Khi đó x2 – y2 bằng: (Toán học - Lớp 10)
Tôi yêu Việt Nam - 06/09/2024 00:10:40
Trong mặt phẳng tọa độ Oxy, cho A(3; 3), B(–1; –9), C(5; –1). Gọi I là trung điểm của AB. Tọa độ M thỏa mãn \(\overrightarrow {AM} = - \frac{1}{2}\overrightarrow {CI} \) là: (Toán học - Lớp 10)
Phạm Minh Trí - 06/09/2024 00:10:38
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có trọng tâm \(G\left( {\frac{2}{3};0} \right)\), biết M(1; –1) là trung điểm của cạnh BC. Tọa độ đỉnh A là: (Toán học - Lớp 10)
Nguyễn Thị Thảo Vân - 06/09/2024 00:10:36
Trong mặt phẳng tọa độ Oxy, cho \(\vec a = \left( {5;2} \right),\,\,\vec b = \left( {10;6 - 2x} \right)\). Giá trị của x để hai vectơ \(\vec a\) và \(\vec b\) cùng phương là: (Toán học - Lớp 10)
Nguyễn Thu Hiền - 06/09/2024 00:10:35
Trong mặt phẳng tọa độ Oxy, cho hai điểm A(2; 3) và B(–2; 1). Điểm C thuộc tia Ox sao cho tam giác ABC vuông tại C có tọa độ là: (Toán học - Lớp 10)
Nguyễn Thu Hiền - 06/09/2024 00:10:34
Trong mặt phẳng tọa độ Oxy, cho \(\vec a = \left( {2;1} \right),\,\,\vec b = \left( {3;4} \right),\,\,\vec c = \left( {7;2} \right)\). Biết rằng \(\vec c = m\vec a + n\vec b\). Tổng m + n bằng: (Toán học - Lớp 10)
Tôi yêu Việt Nam - 06/09/2024 00:10:32
Trong mặt phẳng tọa độ Oxy, cho các điểm A(2; 5), B(1; 1), C(3; 3) và một điểm E thỏa mãn \(\overrightarrow {AE} = 3\overrightarrow {AB} - 2\overrightarrow {AC} \). Tọa độ của điểm E là: (Toán học - Lớp 10)
Bạch Tuyết - 06/09/2024 00:10:31
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(– 1; 1), B(1; 3), C(5; 2). Khi đó \(\widehat {BAC}\) bằng: (Toán học - Lớp 10)
Nguyễn Thu Hiền - 06/09/2024 00:10:29
Trong mặt phẳng tọa độ Oxy, cho \(\vec a = \left( {2;1} \right),\,\,\vec b = \left( {3;4} \right),\,\,\vec c = \left( { - 7;2} \right)\). Nếu \(\vec x - 2\vec a = \vec b - 3\vec c\) thì: (Toán học - Lớp 10)
Phạm Văn Phú - 06/09/2024 00:10:28
Trong mặt phẳng tọa độ Oxy, cho \(\vec a = \left( {3; - 2} \right),\,\,\vec b = \left( {1;4} \right)\). Tọa độ của \(\vec c\) thỏa mãn \(\vec c = 5\vec a + 2\vec b\) là: (Toán học - Lớp 10)
Trần Bảo Ngọc - 06/09/2024 00:10:25
Trong mặt phẳng tọa độ Oxy, cho A(–4; 1), B(2; 4), C(2; –2). Tọa độ điểm D thỏa mãn C là trọng tâm của tam giác ABD là: (Toán học - Lớp 10)
Phạm Văn Bắc - 06/09/2024 00:10:22
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(–1; 2), B(2; 0), C(–3; 1). Tọa độ trọng tâm G của tam giác ABC là: (Toán học - Lớp 10)
Nguyễn Thanh Thảo - 06/09/2024 00:10:21
Trong mặt phẳng tọa độ Oxy, cho hai điểm M(–1; –2) và N(–3; 2). Tọa độ trung điểm I của đoạn thẳng MN là: (Toán học - Lớp 10)
Tô Hương Liên - 06/09/2024 00:10:19
Trong mặt phẳng tọa độ Oxy, cho \(\vec x = \left( {10;2} \right),\,\,\vec y = \left( { - 5;8} \right)\). Khi đó \(\vec x.\vec y\) bằng: (Toán học - Lớp 10)
Trần Đan Phương - 06/09/2024 00:10:18
Trong mặt phẳng tọa độ Oxy, cho \(\vec u = \left( {3; - 6} \right)\). Khi đó \(\frac{1}{2}\vec u\) là: (Toán học - Lớp 10)
Phạm Văn Phú - 06/09/2024 00:10:17
Trong mặt phẳng tọa độ Oxy, cho hai điểm C(4; – 2), D(– 5; 11). Khi đó độ dài đoạn thẳng CD bằng: (Toán học - Lớp 10)
Phạm Văn Bắc - 06/09/2024 00:10:14
Cho hai vectơ \(\overrightarrow m = \left( {{m_1};{m_2}} \right),\,\,\vec n = \left( {{n_1};{n_2}} \right)\) khác \(\vec 0\). Nếu tồn tại một số k ∈ ℝ thỏa mãn m1 = kn1 và m2 = kn2 thì: (Toán học - Lớp 10)
Nguyễn Thanh Thảo - 06/09/2024 00:10:12
Trong mặt phẳng tọa độ Oxy, cho \(\vec a = \left( {{a_1};{a_2}} \right),\,\,\vec b = \left( {{b_1};{b_2}} \right)\) và \(\vec x = \left( {{a_1} + {b_1};{a_2} + {b_2}} \right)\). Khi đó \(\vec x\) bằng: (Toán học - Lớp 10)
Nguyễn Thị Thương - 06/09/2024 00:10:10