Bài tập  /  Bài đang cần trả lời

Chứng minh rằng BC song song với DE

MN GIÚP EM VS Ạ, EM ĐANG CẦN GẤP LẮM, MONG MN GIÚP EM NHA,EM CẢM ƠN MN NHIỀU Ạ
----- Nội dung dịch tự động từ ảnh -----
1.3. Cho tam giác ABC cân tại A. Trên tia đối của tia BA lấy điểm D, trên tia đối
của tia CA lấy điểm E sao cho BD = CE. Gọi I là giao điểm của BE và CD.
a) Chứng minh rằng IB = IC, ID = IE.
=
b) Chứng minh rằng BC song song với DE.
c) Gọi M là trung điểm của BC. Chứng minh rằng ba điểm A, M, I thẳng hàng.
LỜI GIẢI, CHỈ DẪN HOẶC ĐÁP Số
1. Tổng ba góc của một tam giác
40°
1 Xem trả lời
Hỏi chi tiết
826
1
0
Bngann
24/02/2022 16:32:00
+5đ tặng

a) Vì AB = AC (do ΔABCΔABC cân tại A)

BD = CE (gt)

=> AD = AE

Xét hai tam giác ABE và ACD có:

AB = AC (do ΔABCΔABC cân tại A)

AˆA^: góc chung

AD = AE (cmt)

Vậy: ΔABE=ΔACD(c−g−c)ΔABE=ΔACD(c−g−c)

Suy ra: BE = CD (hai cạnh tương ứng) (1)

ABEˆ=ACDˆABE^=ACD^ (hai góc tương ứng) (2)

ΔABCΔABC cân tại A nên B1ˆ=C1ˆB1^=C1^ (3)

Từ (2) và (3) suy ra:

ABEˆ−B1ˆ=ACDˆ−C1ˆABE^−B1^=ACD^−C1^ hay B2ˆ=C2ˆB2^=C2^

Vậy ΔBICΔBIC cân tại I, suy ra: IB = IC (4)

Từ (1) và (4) suy ra:

BE - IB = CD - IC hay IE = ID

b) Các tam giác cân ABC và ADE có chung góc ở đỉnh A nên B1ˆ=ADEˆB1^=ADE^ (hai góc đồng vị)

Do đó: BC // DE

c) Xét hai tam giác BIM và CIM có:

MB = MC (gt)

B2ˆ=C2ˆB2^=C2^(cmt)

IB = IC (do ΔBICΔBIC cân tại I)

Vậy: ΔBIM=ΔCIM(c−g−c)ΔBIM=ΔCIM(c−g−c)

Suy ra: IMBˆ=IMCˆIMB^=IMC^ (hai góc tương ứng)

Mà IMBˆ+IMCˆ=180oIMB^+IMC^=180o (kề bù)

Nên IMBˆ=IMCˆIMB^=IMC^ = 90o (1)

Ta lại có: IMBˆ+AMBˆ=180oIMB^+AMB^=180o (kề bù)

Mà IMBˆ=90oIMB^=90o

⇒AMBˆ=90o⇒AMB^=90o (2)

Từ (1) và (2) suy ra: ba điểm A, M, I thẳng hàng (đpcm)

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×