Tam giác ABC , vẽ AH vuông góc BC tại H , gọi M là trung điểmbBC . trên tia đối HA .Vẽ điểm E sao cho HE = HA , TRÊN TIA ĐỐI MA LẤY ĐIỂM D SAO CHO MD=MA
A, CM; TAM GIÁC ABH= TAM GIÁC EBH
B; CD SONG SONG AB
C; CM ; BE = CD
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Xét ΔAHB vuông tại H và ΔDHB vuông tại D có
BH chung
AH=DH(gt)
Do đó: ΔAHB=ΔDHB(hai cạnh góc vuông)
b) Xét ΔAMB và ΔEMC có
AM=ME(gt)
ˆAMB=ˆEMCAMB^=EMC^(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)
Do đó: ΔAMB=ΔEMC(c-g-c)
⇒ˆBAM=ˆCEMBAM^=CEM^(hai góc tương ứng)
mà ˆBAMBAM^ và ˆCEMCEM^ là hai góc ở vị trí so le trong
nên AB//CE(Dấu hiệu nhận biết hai đường thẳng song song)
Ta có: ΔABH=ΔDBH(cmt)
nên AB=BD(hai cạnh tương ứng)(1)
Ta có: ΔABM=ΔECM(cmt)
nên AB=CE(hai cạnh tương ứng)(2)
Từ (1) và (2) suy ra BD=CE(đpcm)
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |