Bài tập  /  Bài đang cần trả lời

Chứng minh rằng: √2; √3; √5; √6 là những số vô tỉ

Nêu khái niệm số vô tỉ và chứng minh
Help! (Đúng 2 ý trên mik trả xu)
----- Nội dung dịch tự động từ ảnh -----
Bài 73, * Chứng minh rằng: V2;43 ; V5 ; V6 là những số vô tỉ.
2 Xem trả lời
Hỏi chi tiết
447
0
1
Đại
01/09/2022 20:15:32
+5đ tặng

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
1
1
Vy
01/09/2022 20:35:51
+4đ tặng
Giả sử √3 là một số hữu tỉ thì tồn tại hai số nguyên m và n sao cho:
m/n=√3 (1)
với m/n là phân số tối giản hay m và n có ước chung lớn nhất bằng .1
Khi đó từ (1)<=> m=n√3<=>m^2=3n^2 (2)
Từ đó suy ra m^2 chia hết cho 3 nên m phải chia hết cho .3 (3)
Do đó tồn tại số nguyên k sao cho .m=3k Thay vào (2) ta có thể suy ra n^2=3k^2 hay .n=√3k
Do k là số nguyên nên suy ra n không nguyên.
Từ đây suy ra giả sử ban đầu là sai, tức là không có cặp số m,n nguyên nào để m/n=.√3
Vậy √3 không là số hữu tỉ (√3∉Q)

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×