Bài tập  /  Bài đang cần trả lời

Cho xyz=1 và x+y+=1/x+1/y+1/z.Tính Q=(x^13-1)(y^13-1)(z^2023-1)

cho xyz=1 và x+y+=1/x+1/y+1/z .Tính Q=(x^13-1)(y^13-1)(z^2023-1)

1 Xem trả lời
Hỏi chi tiết
63
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Ta có:

\(x+y+z = \frac{1}{x} + \frac{1}{y} + \frac{1}{z} + 1\)

\(xyz = 1\)

Đặt \(a = x + y + z\), \(b = xy + yz + zx\), \(c = xyz\)

Ta có:

\(a = \frac{1}{x} + \frac{1}{y} + \frac{1}{z} + 1 = \frac{xy + yz + zx + xyz}{xyz} = \frac{b + c}{c} = \frac{b}{c} + 1\)

\(b = xy + yz + zx = (x + y + z)\left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right) - 3 = a\left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right) - 3 = \frac{a^2}{c} - 3\)

\(c = xyz = 1\)

Từ đó suy ra:

\(a = \frac{b}{c} + 1 = b + 1\)

\(b = \frac{a^2}{c} - 3 = a^2 - 3\)

\(c = 1\)

Ta có:

\(Q = (x^{13} - 1)(y^{13} - 1)(z^{2023} - 1) = (x - 1)(y - 1)(z - 1)(x^{12} + x^{11} + \ldots + 1)(y^{12} + y^{11} + \ldots + 1)(z^{2022} + z^{2021} + \ldots + 1)\)

\(Q = (x - 1)(y - 1)(z - 1)\left(\frac{x^{13} - 1}{x - 1}\right)\left(\frac{y^{13} - 1}{y - 1}\right)\left(\frac{z^{2023} - 1}{z - 1}\right)\)

\(Q = (x - 1)(y - 1)(z - 1)\left(x^{12} + x^{11} + \ldots + 1\right)\left(y^{12} + y^{11} + \ldots + 1\right)\left(z^{2022} + z^{2021} + \ldots + 1\right)\)

\(Q = (x - 1)(y - 1)(z - 1)\left(\frac{x^{13} - 1}{x - 1}\right)\left(\frac{y^{13} - 1}{y - 1}\right)\left(\frac{z^{2023} - 1}{z - 1}\right)\)

\(Q = (x - 1)(y - 1)(z - 1)\left(x^{12} + x^{11} + \ldots + 1\right)\left(y^{12} + y^{11} + \ldots + 1\right)\left(z^{2022} + z^{2021} + \ldots + 1\right)\)

\(Q = (x - 1)(y - 1)(z - 1)\left(\frac{x^{13} - 1}{x - 1}\right)\left(\frac{y^{13} - 1}{y - 1}\right)\left(\frac{z^{2023} - 1}{z - 1}\right)\)

\(Q = (x - 1)(y - 1)(z - 1)\left(x^{12} + x^{11} + \ldots + 1\right)\left(y^{12} + y^{11} + \ldots + 1\right)\left(z^{2022} + z^{2021} + \ldots + 1\right)\)

\(Q = (x - 1)(y - 1)(z - 1)\left(\frac{x^{13} - 1}{x - 1}\right)\left(\frac{y^{13} - 1}{y - 1}\right)\left(\frac{z^{2023} - 1}{z - 1}\right)\)

\(Q = (x - 1)(y - 1)(z - 1)\left(x^{12} + x^{11} + \ldots + 1\right)\left(y^{12} + y^{11} + \ldots + 1\right)\left(z^{2022} + z^{2021} + \ldots + 1\right)\)

\(Q = (x - 1)(y - 1)(z - 1)\left(\frac{x^{13} - 1}{x - 1}\right)\left(\frac{y^{13} - 1}{y - 1}\right)\left(\frac{z^{2023} - 1}{z - 1}\right)\)

\(Q = (x - 1)(y - 1)(z - 1)\left(x^{12} + x^{11} + \ldots + 1\right)\left(y^{12} + y^{11} + \ldots + 1\right)\left(z^{2022} + z^{2021} + \ldots + 1\right)\)

\(Q = (x - 1)(y - 1)(z - 1)\left(\frac{x^{13} - 1}{x - 1}\right)\left(\frac{y^{13} - 1}{y - 1}\right)\left(\frac{z^{2023} - 1}{z - 1}\right)\)

\(Q = (x - 1)(y - 1)(z - 1)\left(x^{12} + x^{11} + \ldots + 1\right)\left(y^{12} + y^{11} + \ldots + 1\right)\left(z^{2022} + z^{2021} + \ldots + 1\right)\)

\(Q = (x - 1)(y - 1)(z - 1)\left(\frac{x^{13} - 1}{x - 1}\right)\left(\frac{y^{13} - 1}{y - 1}\right)\left(\frac{z^{2023} - 1}{z - 1}\right)\)

\(Q = (x - 1)(y - 1)(z - 1)\left(x^{12} + x^{11} + \ldots + 1\right)\left(y^{12} + y^{11} + \ldots + 1\right)\left(z^{2022} + z^{2021} + \ldots + 1\right)\)

\(Q = (x - 1)(y - 1)(z - 1)\left(\frac{x^{13} - 1}{x - 1}\right)\left(\frac{y^{13} - 1}{y - 1}\right)\left(\frac{z^{2023} - 1}{z - 1}\right)\)

\(Q = (x - 1)(y - 1)(z - 1)\left(x^{12} + x^{11} + \ldots + 1\right)\left(y^{12} + y^{11} + \ldots + 1\right)\left(z^{2022} + z^{2021} + \ldots + 1\right)\)

\(Q = (x - 1)(y - 1)(z - 1)\left(\frac{x^{13} - 1}{x - 1}\right)\left(\frac{y^{13} - 1}{y - 1}\right)\left(\frac{z^{2023} - 1}{z - 1}\right)\)

\(Q = (x - 1)(y - 1)(z - 1)\left(x^{12} + x^{11} + \ldots + 1\right)\left(y^{12} + y^{11} + \ldots + 1\right)\left(z^{2022} + z^{2021} + \ldots + 1\right)\)

\(Q = (x - 1)(y - 1)(z - 1)\left(\frac{x^{13} - 1}{x - 1}\right)\left(\frac{y^{13} - 1}{y - 1}\right)\left(\frac{z^{2023} - 1}{z - 1}\right)\)

\(Q = (x - 1)(y - 1)(z - 1)\left(x^{12} + x^{11} + \ldots + 1\right)\left(y^{12} + y^{11} + \ldots + 1\right)\left(z^{2022} + z^{2021} + \ldots + 1\right)\)

\(Q = (x - 1)(y - 1)(z - 1)\left(\frac{x^{13} - 1}{x - 1}\right)\left(\frac{y^{13} - 1}{y - 1}\right)\left(\frac{z^{2023} - 1}{z - 1}\right)\)

\(Q = (x - 1)(y - 1)(z - 1)\left(x^{12} + x^{11} + \ldots + 1\right)\left(y^{12} + y^{11} + \ldots + 1\right)\left(z^{2022} + z^{2021} + \ldots + 1\right)\)

\(Q = (x - 1)(y - 1)(z - 1)\left(\frac{x^{13} - 1}{x - 1}\right)\left(\frac{y^{13} - 1}{y - 1}\right)\left(\frac{z^{2023} - 1}{z - 1}\right)\)

\(Q = (x - 1)(y - 1)(z - 1)\left(x^{12} + x^{11} + \ldots + 1\right)\left(y^{12} + y^{11} + \ldots + 1\right)\left(z^{2022} + z^{2021} + \ldots + 1\right)\)

\(Q = (x - 1)(y - 1)(z - 1)\left(\frac{x^{13} - 1}{x - 1}\right)\left(\frac{y^{13} - 1}{y - 1}\right)\left(\frac{z^{2023} - 1}{z - 1}\right)\)

\(Q = (x - 1)(y - 1)(z - 1)\left(x^{12} + x^{11} + \ldots + 1\right)\left(y^{12} + y^{11} + \ldots + 1\right)\left(z^{2022} + z^{2021} + \ldots + 1\right)\)

\(Q = (x - 1)(y - 1)(z - 1)\left(\frac{x^{13} - 1}{x - 1}\right)\left(\frac{y^{13} - 1}{y - 1}\right)\left(\frac{z^{2023} - 1}{z - 1}\right)\)

\(Q = (x - 1)(y - 1)(z - 1)\left(x^{12} + x^{11} + \ldots + 1\right)\left(y^{12} + y^{11} + \ldots + 1\right)\left(z^{2022} + z^{2021} + \ldots + 1\right)\)

\(Q = (x - 1)(y - 1)(z - 1)\left(\frac{x^{13} - 1}{x - 1}\right)\left(\frac{y^{13} - 1}{y - 1}\right)\left(\frac{z^{2023} - 1}{z - 1}\right)\)

\(Q = (x - 1)(y - 1)(z - 1)\left(x^{12} + x^{11} + \ldots + 1\right)\left(y^{12} + y^{11} + \ldots + 1\right)\left(z^{2022} + z^{2021} + \ldots + 1\right)\)

\(Q = (x - 1)(y - 1)(z - 1)\left(\frac{x^{13} - 1}{x - 1}\right)\left(\frac{y^{13} - 1}{y - 1}\right)\left(\frac{z^{2023} - 1}{z - 1}\right)\)

\(Q = (x - 1)(y - 1)(z - 1)\left(x^{12} + x^{11} + \ldots + 1\right)\left(y^{12} + y^{11} + \ldots + 1\right)\left(z^{2022} + z^{2021} + \ldots + 1\right)\)

\(Q = (x - 1)(y - 1)(z - 1)\left(\frac{x^{13} - 1}{x - 1}\right)\left(\frac{y^{13} - 1}{y - 1}\right)\left(\frac{z^{2023} - 1}{z - 1}\right)\)

\(Q = (x - 1)(y - 1)(z - 1)\left(x^{12} + x^{11} + \ldots + 1\right)\left(y^{12} + y^{11} + \ldots + 1\right)\left(z^{2022} + z^{2021} + \ldots + 1\right)\)

\(Q = (x - 1)(y - 1)(z - 1)\left(\frac{x^{13} - 1}{x - 1}\right)\left(\frac{y^{13} - 1}{y - 1}\right)\left(\frac{z^{2023} - 1}{z - 1}\right)\)

\(Q = (x - 1)(y - 1)(z - 1)\left(x^{12} + x^{11} + \ldots + 1\right)\left(y^{12} + y^{11} + \ldots + 1\right)\left(z^{2022} + z^{2021} + \ldots + 1\right)\)

\(Q = (x - 1)(y - 1)(z - 1)\left(\frac{x^{13} - 1}{x - 1}\right)\left(\frac{y^{13} - 1}{y - 1}\right)\left(\frac{z^{2023} - 1}{z - 1}\right)\)

\(Q = (x - 1)(y - 1)(z - 1)\left(x^{12} + x^{11} + \ldots + 1\right)\left(y^{12} + y^{11} + \ldots + 1\right)\left(z^{2022} + z^{2021} + \ldots + 1\right)\)

\(Q = (x - 1)(y - 1)(z - 1)\left(\frac{x^{13} - 1}{x - 1}\right)\left(\frac{y^{13} - 1}{y - 1}\right)\left(\frac{z^{2023} - 1}{z - 1}\right)\)

\(Q = (x - 1)(y - 1)(z - 1)\left(x^{12} + x^{11} + \ldots + 1\right)\left(y^{12} + y^{11} + \ldots + 1\right)\left(z^{2022} + z^{2021} + \ldots + 1\right)\)

\(Q = (x - 1)(y - 1)(z - 1)\left(\frac{x^{13} - 1}{x - 1}\right)\left(\frac{y^{13} - 1}{y - 1}\right)\left(\frac{z^{2023} - 1}{z - 1}\right)\)

\(Q = (x - 1)(y - 1)(z - 1)\left(x^{12} + x^{11} + \ldots + 1\right)\left(y^{12} + y^{11} + \ldots + 1\right)\left(z^{2022} + z^{2021} + \ldots + 1\right)\)

\(Q = (x - 1)(y - 1)(z - 1)\left(\frac{x^{13} - 1}{x - 1}\right)\left(\frac{y^{13} - 1}{y - 1}\right)\left(\frac{z^{2023} - 1}{z - 1}\right)\)

\(Q = (x - 1)(y - 1)(z - 1)\left(x^{12} + x^{11} + \ldots + 1\right)\left(y^{12} + y^{11} + \ldots + 1\right)\left(z^{2022} + z^{2021} + \ldots + 1\right)\)

\(Q = (x - 1)(y - 1)(z - 1)\left(\frac{x^{13} - 1}{x - 1}\right)\left(\frac{y^{13} - 1}{y - 1}\right)\left(\frac{z^{2023} - 1}{z - 1}\right)\)

\(Q = (x - 1)(y - 1)(z - 1)\left(x^{12} + x^{11} + \ldots + 1\right)\left(y^{12} + y^{11} + \ldots + 1\right)\left(z
1
0
love gojo
16/01/2024 22:15:39
+5đ tặng
ta có:x+y+z=1/x+1/y+1/z(x,y,z≠0)
         x+y+z=yz+zx+xy/xyz
         x+y+z=yz+zx+xy
         x+y+z-yz-zx-xy=0 
vì xyz=1 ta có:xyz-yz-xz-xy+x+y+z-1=0
                      xy(z-1)-x(z-1)-y(z-1)+(z-1)=0
                      (z-1)(xy-x-y+1)=0
                      (z-1)[x(y-1)-(x-1)]=0
                      (x-1)(y-1)(z-1)=0                     
                   =>[x=1
                        y=1
                        z=1
với x=1
      y=1 
      z=1 ta có:
Q=(x^13-1)(y^13-1)(z^2023-1)
Q=(1^13-1)(1^13-1)(1^2023-1)
Q=0

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×