Bài tập  /  Bài đang cần trả lời

Cho tứ giác ABCD có góc DAC vuông và góc DBC vuông. Chứng minh 4 điểm A, B, C, D cùng thuộc một đường tròn

Bài 1: Cho tứ giác ABCD có góc DAC vuông và góc DBC vuông.

a) Chứng minh 4 điểm A, B, C, D cùng thuộc một đường tròn.

b) Chứng minh  AB<CD.

1 Xem trả lời
Hỏi chi tiết
155
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để chứng minh 4 điểm A, B, C, D cùng thuộc một đường tròn, ta cần chứng minh rằng tứ giác ABCD là tứ giác nội tiếp. Điều này có nghĩa là tổng của hai góc đối diện của tứ giác phải bằng 180 độ.

### Phần a: Chứng minh 4 điểm A, B, C, D cùng thuộc một đường tròn

1. **Xét góc DAC và góc DBC:**
- Giả sử góc DAC = 90 độ và góc DBC = 90 độ.

2. **Xét tổng của hai góc đối diện:**
- Xét tứ giác ABCD, ta có:
- Góc DAC = 90 độ.
- Góc DBC = 90 độ.

3. **Tổng của hai góc đối diện:**
- Tổng của góc DAC và góc DBC là:
\[
\text{Góc DAC} + \text{Góc DBC} = 90^\circ + 90^\circ = 180^\circ
\]

4. **Kết luận:**
- Vì tổng của hai góc đối diện của tứ giác ABCD bằng 180 độ, nên tứ giác ABCD là tứ giác nội tiếp.
- Do đó, 4 điểm A, B, C, D cùng thuộc một đường tròn.

### Phần b: Chứng minh AB < CD

Để chứng minh AB < CD, ta cần sử dụng một số tính chất hình học và định lý liên quan đến tam giác vuông và đường tròn.

1. **Xét tam giác vuông DAC và tam giác vuông DBC:**
- Trong tam giác vuông DAC, cạnh AC là cạnh huyền.
- Trong tam giác vuông DBC, cạnh BC là cạnh huyền.

2. **So sánh độ dài các cạnh:**
- Trong tam giác vuông, cạnh huyền luôn lớn hơn các cạnh góc vuông.
- Do đó, trong tam giác vuông DAC, ta có:
\[
AC > AD \quad \text{và} \quad AC > DC
\]
- Tương tự, trong tam giác vuông DBC, ta có:
\[
BC > BD \quad \text{và} \quad BC > DC
\]

3. **Sử dụng định lý Pythagore:**
- Trong tam giác vuông DAC, theo định lý Pythagore, ta có:
\[
AC^2 = AD^2 + DC^2
\]
- Trong tam giác vuông DBC, theo định lý Pythagore, ta có:
\[
BC^2 = BD^2 + DC^2
\]

4. **So sánh AB và CD:**
- Do AC và BC là các cạnh huyền của các tam giác vuông, nên chúng lớn hơn các cạnh góc vuông tương ứng.
- Vì AC và BC đều lớn hơn DC, nên tổng của chúng (tức là CD) sẽ lớn hơn AB.

5. **Kết luận:**
- Từ các bước trên, ta có thể kết luận rằng:
\[
AB < CD
\]

Như vậy, ta đã chứng minh được rằng 4 điểm A, B, C, D cùng thuộc một đường tròn và AB < CD.
2
0
+5đ tặng

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×