Cho tam giác ABC vuông tại A và điểm M thuộc cạnh AC. Vẽ đường tròn tâm O đường kính MC cắt BC tại E. Nối BM cắt đường tròn (O) tại N, AN cắt đường tròn (O) tại D. Lấy I đối xứng với M qua A, K đối xứng với M qua E
a, Chứng minh BANC là tứ giác nội tiếp
b, Chứng minh CA là phân giác của BCD^
c, Chứng minh ABED là hình thang
d, Tìm vị trí M để đường tròn ngoại tiếp tam giác BIK có bán kính nhỏ nhất
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a, Học sinh tự chứng minh
b, Học sinh tự chứng minh
c, Học sinh tự chứng minh
d, Chú ý: BIA^=BMA^,BMC^=BKC^
=> Tứ giác BICK nội tiếp đường tròn (T), mà (T) cũng là đường tròn ngoại tiếp DBIK. Trong (T), dây BC không đổi mà đường kính của (T) ≥ BC nên đường kính nhỏ nhất bằng BC
Dấu "=" xảy ra <=> BIC^=900 => I≡A => MA
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |