Cho tam giác ABC vuông tại A, đường cao AH, biết AH : AC = 3: 5 và AB = 15cm.
a) Tính HB, HC.
b) Gọi E, F lần lượt là hình chiếu của H trên AB và AC. Chứng minh AB.AC = EF.BC.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Xét ΔABH và ΔCBA có:
ABC^ chung
AHB^=BAC^=90°
⇒ ΔABH ∽ ΔCBA(g.g)
⇒ ABBC=AHAC=35⇒ABBC=35
Hay 15BC=35⇒BC=25cm
Xét ΔABC vuông tại A, đường cao AH có:
AB2 = HB.BC ( hệ thức lượng trong Δ vuông )
⇔ 152 = HB.25
⇔ 225 = HB.25
⇔ HB = 9 (cm)
HB + HC = BC
⇔ 9 + HC = 25
⇔ HC = 16(cm)
b) Xét tứ giác AEHF có:
Nên AEHF là hình chữ nhật
⇒ AH = EF
Xét ΔABC vuông tại A, đường cao AH có:
AB.AC = AH.BC (hệ thức lượng trong Δ vuông)
⇒ AB.AC = EF.BC (vì AH = EF).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |