Cho tam giác ABC cân tại A nội tiếp đường tròn (O), AC = 5a, BC = 6a. Tính khoảng cách từ điểm O đến dây BC theo a.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Kẻ đường kính AD sao cho A, O, D, H thẳng hàng
Vì ABC cân tại A nên AB = AC = 5a.
HB = HC = BC : 2 = 6a : 2 = 3a
Tam giác AHC vuông tại H, ta có: AH=AC2−HC2=25a2−9a2=4a
Tam giác ABD nội tiếp đường tròn tâm O đường kính AD nên: ABD^=90°
Suy ra: Tam giác ABD vuông tại B
Theo hệ thức lượng, ta có: AB2 = AH.AD
Suy ra: AD = 25a2 : 4a = 254a
OA = OD = 12AD=12.254a=258a
Khoảng cách từ O đến BC = OH - AH – OA = 4a−258a=78a
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |