Cho hình bình hành ABCD có BC = 2AB và \[\widehat A = 60^\circ \]. Gọi E, F theo thứ tự là trung điểm của BC và AD.
a) Tứ giác ECDF là hình gì? Vì sao?
b) Tam giác DEC là tam giác gì? Vì sao?
c) Tính số đo\[\widehat {AED}\]?
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
a) Ta có \[\left\{ \begin{array}{l}BC = 2AD = 2AB = 2AE = 2FD\\BC = 2BE = 2EC\end{array} \right.\]
Suy ra AB = BE = EC = CD = FD = AF
Tứ giác ECFD có \[\left\{ \begin{array}{l}FD//EC\\FD = EC\end{array} \right.\]
Do đó tứ giác ECFD là hình bình hành.
b) ∆ DEC có: \[\left\{ \begin{array}{l}DC = EC\\\widehat A = \widehat C = 60^\circ \end{array} \right.\] ⇒ ∆ DEC là ∆ đều
c) Ta có: tứ giác ABEF là hình bình hành nên AB // FE ⇒ \[\widehat {AEF} = \widehat {EAB}\] (1)
• Xét ∆AFE có AF = FE nên ∆AFE là tam giác cân.
Do đó \[\widehat {FAE} = \widehat {FEA}\] (2)
Từ (1) và (2) suy ra \[\widehat {BAE} = \widehat {EAF} = \widehat {FEA} = \frac{{60^\circ }}{2} = 30^\circ \].
• Xét ∆FED có \[\left\{ \begin{array}{l}FD = DC = DE\\\widehat {FDE} = 60^\circ \end{array} \right.\] nên ∆FED là tam giác đều.
Suy ra \[\widehat {FDE} = \widehat {DEF} = \widehat {EFD} = \frac{{180^\circ }}{3} = 60^\circ \].
Ta có \[\widehat {AED} = \widehat {AEF} + \widehat {FED} = 30^\circ + 60^\circ = 90^\circ \]
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |