Có bao nhiêu cặp số nguyên \(\left( {x\,;\,\,y} \right)\) thỏa mãn đồng thời \({2^x} + y \le {\log _2}(x - y)\) và \[x,\,\,y\] thuộc đoạn \(\left[ { - 2\,;\,\,10} \right]\)?
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Ta có \({2^x} + y \le {\log _2}\left( {x - y} \right)\)
\( \Leftrightarrow {2^x} + x \le {\log _2}\left( {x - y} \right) \Leftrightarrow {2^x} + x \le {\log _2}\left( {x - y} \right) + {2^{{{\log }_2}\left( {x - y} \right)}}\)
• Xét hàm số \(f(t) = {2^t} + t\) có \(f'\left( t \right) = {2^t}\ln 2 + 1 > 0,\,\,\forall t \in \mathbb{R}.\)
Hàm số đồng biến trên \(\mathbb{R}\), do đó: \((*) \Leftrightarrow x \le {\log _2}\left( {x - y} \right) \Leftrightarrow {2^x} \le x - y \Leftrightarrow y \le x - {2^x}\,\,(**)\)
• Xét hàm số \(g(x) = x - {2^x}\) trên đoạn \(\left[ { - 2\,;\,\,10} \right]\).
Ta có: \(g'\left( x \right) = 1 - {2^x}\ln 2\) và \(g'\left( x \right) = 0 \Leftrightarrow x = {\log _2}\left( {{{\log }_2}e} \right)\)
Bảng biến thiên
Kết hợp \((**)\) và bảng biên thiên ta có: \( - 2 \le y \le {\log _2}\left( {\frac{{{{\log }_2}e}}{e}} \right)\).
Do \(y \in \mathbb{Z}\) nên \(y = - 2\) hoặc \(y = - 1\).
• Với \(y = - 2\) ta có: \(g\left( x \right) \ge - 2.\) Do \(x \in \mathbb{Z}\) nên suy ra \(x \in \left\{ { - 1\,;\,\,0\,;\,\,1\,;\,\,2} \right\}.\)
Trường hợp này có bốn cặp số \(\left( {x\,;\,\,y} \right)\) thỏa mãn.
• Với \(y = - 1\) ta có: \(g\left( x \right) \ge - 1.\) Do \(x \in \mathbb{Z}\) nên suy ra \(x \in \left\{ {0\,;\,\,1} \right\}.\)
Trường hợp này có hai cặp số \(\left( {x\,;\,\,y} \right)\) thỏa mãn.
Vậy có tất cả 6 cặp số \(\left( {x\,;\,\,y} \right)\) thỏa mãn yêu cầu bài toán.
Đáp án: 6.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |