Cho hình thang \[ABCD\] vuông tại \(A\) tại \(B\) có \(AB = 1\,,\,\,AD = 3\) và \(BC = x\) với \(0 < x < 3.\) Gọi \({V_1},{V_2}\) lần lượt là thể tích các khối tròn xoay tạo thành khi quay hình thang \[ABCD\] (kể cả các điểm trong) quanh đường thẳng \[BC\] và \[AD.\] Tìm \[x\] để \(\frac{}{} = \frac{7}{5}\).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Dựng các điểm \[E,\,\,F\] để có các hình chữ nhật \[ABED\] và \[ABCF\] như hình vẽ.
• TH1: Khi quay hình thang \[ABCD\] (kể cả các điểm trong) quanh đường thẳng \[BC\] ta được khối tròn xoay có thể tích là \({V_1} = {V_3} - {V_4} = 3\pi - \frac{1}{3}\pi \left( {3 - x} \right) = 2\pi + \frac{1}{3}\pi x = \frac{1}{3}\pi \left( {6 + x} \right).\)
Trong đó, \({V_3}\) là thể tích khối trụ tròn xoay có bán kính đáy bằng 1 , chiều cao bằng \(3;{V_4}\) là thể tích khối nón tròn xoay có bán kính đáy bằng 1, chiều cao bằng \(3 - x.\)
• TH2: Khi quay hình thang \[ABCD\] (kể cả các điểm trong) quanh đường thẳng \[AD\] ta được khối tròn xoay có thể tích là \({V_2} = {V_5} + {V_4} = \pi x + \frac{1}{3}\pi \left( {3 - x} \right) = \pi + \frac{2}{3}\pi x = \frac{1}{3}\pi \left( {3 + 2x} \right).\)
Trong đó, \({V_5}\) là thể tích khối trụ tròn xoay có bán kính đáy bằng 1 , chiều cao bằng x.
Theo giả thiết ta có: \(\frac{}{} = \frac{7}{5} \Leftrightarrow \frac = \frac{7}{5} \Leftrightarrow x = 1.\)
Đáp án: 1.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |