Có bao nhiêu giá trị nguyên của tham số \(m \in \left[ { - 2021\,;\,\,2021} \right]\) để đồ thị hàm số \(y = \frac{{\sqrt {{x^2} - 2x + m} }}\) có hai đường tiệm cận đứng?
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Đồ thị hàm số \(y = \frac{{\sqrt {{x^2} - 2x + m} }}\) có hai đường tiệm cận đứng khi phương trình \({x^2} - 2x + m = 0\) có hai nghiệm phân biệt khác \[ - \,2\]
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{\Delta ' > 0}\\{{{\left( { - 2} \right)}^2} - 2 \cdot \left( { - 2} \right) + m \ne 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{1 - m > 0}\\{m \ne - 8}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{m < 1}\\{m \ne - 8}\end{array}} \right.} \right.} \right.\)
Mà \(m\) nguyên và \(m \in \left[ { - 2021\,;\,\,2021} \right]\)
Nên suy ra \[m \in \left\{ { - 2021\,;\,\, - 2020\,;\,\, \ldots \,;\,\, - 3\,;\,\, - 2\,;\,\, - 1\,;\,\,0} \right\}\backslash \left\{ { - 8} \right\}.\]
Vậy có 2021 giá trị \(m\) thoả mãn yêu cầu bài toán. Đáp án: 2021.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |