Cho hai số thực \(a > 1\,,\,\,b > 1\) và phương trình \({a^{{x^2}}} \cdot {b^{x + 1}} = 1\) có nghiệm thực. Giá trị nhỏ nhất của biểu thức \(P = {\log _a}\left( {ab} \right) + \frac{4}{{{{\log }_a}b}}\) bằng
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Ta có \({a^{{x^2}}} \cdot {b^{x + 1}} = 1 \Leftrightarrow {\log _a}\left( {{a^{{x^2}}} \cdot {b^{x + 1}}} \right) = {\log _a}1\)
\( \Leftrightarrow {\log _a}{a^{{x^2}}} + {\log _a}{b^{x + 1}} = 0 \Leftrightarrow {x^2} + \left( {x + 1} \right){\log _a}b = 0\)
\( \Leftrightarrow {x^2} + {\log _a}b \cdot x + {\log _a}b = 0\, & (*)\)
Phương trình \((*)\) có nghiệm \( \Leftrightarrow \Delta = {\left( {{{\log }_a}b} \right)^2} - 4{\log _a}b \ge 0\)
Mà \(a > 1\,,\,\,b > 1\) nên \({\log _a}b > 0\) suy ra \({\log _a}b \ge 4.\)
Đặt \(t = {\log _a}b \ge 4\), khi đó \(P = {\log _a}a + {\log _a}b + \frac{4}{{{{\log }_a}b}}\)
\( = 1 + t + \frac{4}{t} = f\left( t \right) \Rightarrow f'\left( t \right) = 1 - \frac{4}{{{t^2}}} = \frac{{{t^2} - 4}}{{{t^2}}} > 0\,;\,\,\forall t \ge 4\)
Suy ra \(f\left( t \right)\) là hàm số đồng biến trên \(\left( {4\,;\,\, + \infty } \right)\)
Vậy \(\min P = {\min _{\left[ {4\,;\,\, + \infty } \right)}}f\left( t \right) = f\left( 4 \right) = 6.\) Đáp án: 6.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |