Một cơ sở chế biến nước mắm đặt hàng xưởng sản xuất gia công làm một bể chứa bằng Inox hình trụ có nắp đậy với dung tích \(2\;\,{{\rm{m}}^3}.\) Yêu cầu đặt ra cho xưởng sản xuất là phải tốn ít vật liệu nhất. Biết rằng giá tiền Inox là 600 nghìn đồng. Hỏi số tiền Inox (làm tròn đến hàng nghìn) để sản xuất bể chứa nói trên là bao nhiêu nghìn đồng?
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Gọi \[R,{\rm{ }}h\] lần lượt là bán kính đáy và chiều cao của bể hình trụ.
Theo bài ra, ta có \(V = 2 \Leftrightarrow \pi {R^2}h = 2 \Leftrightarrow h = \frac{2}{{\pi {R^2}}}\)
Suy ra diện tích toàn phần của bể hình trụ là:
\({S_{tp}} = 2\pi Rh + 2\pi {R^2} = 2\pi R.\frac{2}{{\pi {R^2}}} + 2\pi {R^2} = \frac{4}{R} + 2\pi {R^2}\).
Áp dụng bất đẳng thức Cô-si, ta có:
\(\frac{4}{R} + 2\pi {R^2} = \frac{2}{R} + \frac{2}{R} + 2\pi {R^2} \ge 3\sqrt[3]{{\frac{2}{R} \cdot \frac{2}{R} \cdot 2\pi {R^2}}} = 6\sqrt[3]{\pi }.\)
Dấu bằng xảy ra khi và chỉ khi \(\frac{2}{R} = 2\pi {R^2} \Leftrightarrow {R^3} = \frac{1}{\pi } \Leftrightarrow R = \frac{1}{{\sqrt[3]{\pi }}}.\)
Vậy số tiền để sản xuất bể chứa nói trên sao cho tốn ít vật liệu nhất là
\(T = {S_{\min }} \cdot 600 = 6\sqrt[3]{\pi } \cdot 600 \approx 5273\) (nghìn đồng). Đáp án: 5273.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |