Bài tập  /  Bài đang cần trả lời

Cho một tấm nhôm hình vuông cạnh 1m như hình sau: Người ta cắt phần tô đậm của tấm nhôm rồi gập thành một hình chóp tứ giác đều có cạnh đáy bằng x (m). Tìm giá trị của x để khối chóp nhận được có thể tích lớn nhất (kết quả làm tròn đến hàng phần trăm).

Cho một tấm nhôm hình vuông cạnh 1m như hình sau:

Người ta cắt phần tô đậm của tấm nhôm rồi gập thành một hình chóp tứ giác đều có cạnh đáy bằng x (m). Tìm giá trị của x để khối chóp nhận được có thể tích lớn nhất (kết quả làm tròn đến hàng phần trăm).

1 Xem trả lời
Hỏi chi tiết
54
0
0
Phạm Minh Trí
11/09/2024 10:35:11

Đặt cạnh bên là \(y\) và cạnh đáy của chóp đều là \(x\).

Độ dài đường cao của mặt bên là: \(a = \sqrt {{y^2} - {{\left( {\frac{x}{2}} \right)}^2}} \).

Khi đó theo tấm nhôm, ta được: \(2a + x = \sqrt 2  \Leftrightarrow 2\sqrt {{y^2} - \frac{{{x^2}}}{4}}  + x = \sqrt 2 \) (bằng đường chéo tấm nhôm hình vuông).

\( \Rightarrow 4\left( {{y^2} - \frac{{{x^2}}}{4}} \right) = {\left( {\sqrt 2  - x} \right)^2} = {x^2} - 2x\sqrt 2  + 2 \Rightarrow 4{y^2} = 2{x^2} - 2x\sqrt 2  + 2.\)

Lại có \({V_{hc}} = \frac{1}{3}h \cdot {S_a} = \frac{1}{3}\sqrt {{y^2} - {{\left( {\frac{{x\sqrt 2 }}{2}} \right)}^2}}  \cdot {x^2} = \frac{{{x^2}}}{3}\sqrt {\frac{2}}  = \frac{1}{6}\sqrt {2{x^4} - 2\sqrt 2 {x^5}} .\)

Ta thấy \({V_{hc}}\) lớn nhất khi \(f\left( x \right) = 2{x^4} - 2\sqrt 2 {x^5}\) đạt giá trị lớn nhất \(\left( {0 < x < \frac{{\sqrt 2 }}{2}} \right)\).

Ta có \(f'\left( x \right) = 8{x^3} - 10\sqrt 2 {x^4} = 2{x^3}\left( {4 - 5\sqrt 2 x} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = \frac{{2\sqrt 2 }}{5}}\end{array}} \right.\).

Ta có bảng biến thiên:

Vậy thể tích khối chóp lớn nhất khi và chỉ khi \(x = \frac{{2\sqrt 2 }}{5} \approx 0,57\;\,({\rm{m)}}.\)

Đáp án: \[{\bf{0}},{\bf{57}}\].

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×