Một mảnh vườn hình chữ nhật có diện tích 961m2 người ta muốn mở rộng thêm 4 phần đất sao cho tạo thành hình tròn ngoại tiếp mảnh vườn. Biết tâm hình tròn trùng với tâm của hình chữ nhật. Tính diện tích nhỏ nhất của 4 phần đất được mở rộng (kết quả làm tròn đến chữ số hàng đơn vị).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Gọi x, y lần lượt là hai kích thước của mảnh vườn \(\left( {x > 0\,;\,\,y > 0} \right).\)
Và \(R\) là bán kính đường tròn ngoại tiếp mảnh vườn.
Suy ra \({R^2} = O{A^2} = \frac{{A{C^2}}}{4} = \frac{{{x^2} + {y^2}}}{4}\).
Diện tích 4 phần đất mở rộng là \(S = {S_{{\rm{h}}{\rm{.tron }}}} - {S_{ABCD}} = \pi {R^2} - xy\)\( = \pi \cdot \frac{{{x^2} + {y^2}}}{4} - xy \ge \pi \cdot \frac{4} - xy = \left( {\frac{\pi }{2} - 1} \right)xy = \left( {\frac{\pi }{2} - 1} \right) \cdot 961 \approx 549\,\,\left( {{m^2}} \right){\rm{. }}\)
Đáp án: 549.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |