Bài tập  /  Bài đang cần trả lời

Cho khối lăng trụ đứng \(ABC.A'B'C'\) có đáy \[ABC\] là tam giác vuông cân tại \(A,\) cạnh bên \(AA' = 6,\) góc giữa hai mặt phẳng \(\left( {A'BC} \right)\) và \((ABC)\) bằng \(60^\circ .\) Thể tích của khối lăng trụ đã cho bằng

Cho khối lăng trụ đứng \(ABC.A'B'C'\) có đáy \[ABC\] là tam giác vuông cân tại \(A,\) cạnh bên \(AA' = 6,\) góc giữa hai mặt phẳng \(\left( {A'BC} \right)\) và \((ABC)\) bằng \(60^\circ .\) Thể tích của khối lăng trụ đã cho bằng

1 Xem trả lời
Hỏi chi tiết
22
0
0
Phạm Minh Trí
11/09/2024 11:11:13

Kẻ \(AH \bot BC\), ta có \(AA' \bot \left( {ABC} \right) \Rightarrow AA' \bot BC\)

Suy ra \(BC \bot \left( {A'AH} \right) \Rightarrow A'H \bot BC\)

Do đó \(\left( {\widehat {\left( {A'BC} \right);\,\,\left( {ABC} \right)}} \right) = \left( {\widehat {A'H;\,\,AH}} \right) = \widehat {A'HA} = 60^\circ \)

\(\Delta A'AH\) vuông tại \(A\), có \[\tan \widehat {A'HA} = \frac{{AA'}}\]

 \[ \Rightarrow \tan 60^\circ  = \frac{6} \Leftrightarrow AH = 6\sqrt 3 .\]

Xét \[\Delta ABC\] vuông cân tại \(A\) nên \(BC = 2AH = 12\sqrt 3 .\)

Diện tích \[\Delta ABC\] là \({S_{ABC}} = \frac{1}{2}AH \cdot BC = \frac{1}{2} \cdot 6\sqrt 3  \cdot 12\sqrt 3  = 108.\)

Vậy thể tích cần tính là \(V = AA' \cdot {S_{ABC}} = 6 \cdot 108 = 648.\)

Đáp án: 648.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Câu hỏi liên quan

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×