Bài tập  /  Bài đang cần trả lời

Có bao nhiêu cặp số nguyên \(\left( {x\,;\,\,y} \right)\) thoả mãn \({2022^{ - 1}} \le y \le 2022\) và \({2.3^{x - 1}} - {\log _3}\left( {{3^{x - 2}} + 2y} \right) = 6y - x + 1\,{\rm{? }}\)

Có bao nhiêu cặp số nguyên \(\left( {x\,;\,\,y} \right)\) thoả mãn \({2022^{ - 1}} \le y \le 2022\) và \({2.3^{x - 1}} - {\log _3}\left( {{3^{x - 2}} + 2y} \right) = 6y - x + 1\,{\rm{? }}\)

1 Xem trả lời
Hỏi chi tiết
13
0
0
Nguyễn Thị Nhài
11/09/2024 11:17:23

Đặt \({\log _3}\left( {{3^{x - 2}} + 2y} \right) = a \Leftrightarrow {3^{x - 2}} + 2y = {3^a}\) và \({2.3^{x - 1}} - a = 6y - x + 1\).

Suy ra \(\left\{ {\begin{array}{*{20}{l}}{{3^{x - 2}} + 2y = {3^a}}\\{{{2.3}^{x - 1}} - a = 6y - x + 1}\end{array}} \right.\)\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{3 \cdot {3^a} = {3^{x - 1}} + 6y}\\{2 \cdot {3^{x - 1}} - a = 6y - x + 1}\end{array}} \right.\)

Lấy (1) trừ (2), ta được \(3 \cdot {3^a} - 2 \cdot {3^{x - 1}} + a = {3^{x - 1}} + x - 1\)

\( \Leftrightarrow {3^{a + 1}} + a = {3^x} + x - 1\)\( \Leftrightarrow f(a) = f\left( {x - 1} \right)\) với \(f(t) = {3^{t + 1}} + t\) là hàm số đồng biến.

Do đó \(a = x - 1 \Leftrightarrow {3^{x - 2}} + 2y = {3^{x - 1}} \Leftrightarrow 2y = \frac{2}{9}{.3^x} \Leftrightarrow y = {3^{x - 2}}\).

Mà \({2022^{ - 1}} \le y \le 2022 \Rightarrow {2022^{ - 1}} \le {3^{x - 2}} \le 2022\)\( \Leftrightarrow  - {\log _3}2022 \le x - 2 \le {\log _3}2022\)

\( \Leftrightarrow  - 4,93 \le x \le 8,932\) và \(x \in \mathbb{Z}\) có 13 giá trị nguyên \(x\) thỏa mãn.

Vậy có tất cả 13 cặp số nguyên \(\left( {x\,;\,\,y} \right)\) thỏa mãn yêu cầu bài toán.

Đáp án: 13.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
Gửi câu hỏi
×