Có bao nhiêu số nguyên của \(m\) thuộc đoạn \(\left[ { - 100\,;\,\,100} \right]\) để đồ thị hàm số \(y = \frac{1}{{\left( {x - m} \right)\sqrt {2x - {x^2}} }}\) có đúng hai đường tiệm cận?
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Ta có điều kiện xác định là \(\left\{ {\begin{array}{*{20}{l}}{x \ne m}\\{x \in \left( {0\,;\,\,2} \right)}\end{array}} \right.\), khi đó đồ thị hàm số sẽ không có tiệm cận ngang.
Ta có \(\mathop {\lim }\limits_{x \to {0^ + }} y = \infty \,,\,\,\mathop {\lim }\limits_{x \to {2^ - }} y = \infty \)
Suy ra \(x = 0\,,\,\,x = 2\) là hai đường tiệm cận đứng.
Vậy để đồ thị hàm số có đúng hai đường tiệm cận thì \(\left[ {\begin{array}{*{20}{l}}{m \le 0}\\{m \ge 2}\end{array}} \right.\), theo bài \(m\) thuộc đoạn \(\left[ { - 100\,;\,\,100} \right].\)
Vậy có 200 số nguyên \(m\) thoả mãn đầu bài.
Đáp án: 200.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |