Bài tập  /  Bài đang cần trả lời

Có tất cả bao nhiêu giá trị nguyên của \(y\) sao cho tương ứng với mỗi \(y\) luôn tồn tại không quá 63 số nguyên \(x\) thỏa mãn điều kiện \({\log _{2020}}\left( {x + {y^2}} \right) + {\log _{2021}}\left( {{y^2} + y + 64} \right) \ge {\log _4}\left( {x - y} \right).\)

Có tất cả bao nhiêu giá trị nguyên của \(y\) sao cho tương ứng với mỗi \(y\) luôn tồn tại không quá 63 số nguyên \(x\) thỏa mãn điều kiện \({\log _{2020}}\left( {x + {y^2}} \right) + {\log _{2021}}\left( {{y^2} + y + 64} \right) \ge {\log _4}\left( {x - y} \right).\)

1 Xem trả lời
Hỏi chi tiết
14
0
0
Đặng Bảo Trâm
11/09/2024 11:31:42

Đáp án: 602

Giải chi tiết:

Đặt \(f\left( x \right) = {\log _{2020}}\left( {x + {y^2}} \right) + {\log _{2021}}\left( {{y^2} + y + 64} \right) - {\log _4}\left( {x - y} \right)\) (coi \[y\] là tham số).

Điều kiện xác định của \[f\left( x \right)\] là \[\left\{ {\begin{array}{*{20}{c}}{x + {y^2} > 0}\\{{y^2} + y + 64 > 0}\\{x - y > 0}\end{array}} \right.\].

Do \[x,\;y\] nguyên nên \(x > y \ge - {y^2}\). Cũng vì \(x,\;y\) nguyên nên ta chỉ xét \(f\left( x \right)\) trên nửa khoảng \(\left[ {y + 1; + \infty } \right)\).

\(f'\left( x \right) = \frac{1}{{\left( {x + {y^2}} \right)\ln 2020}} - \frac{1}{{\left( {x - y} \right)\ln 2021}} - \frac{1}{{\left( {x - y} \right)\ln 4}} < 0,\;\forall x \ge y + 1\)

Ta có bảng biến thiên của hàm số \(f\left( x \right)\):

Yêu cầu bài toán trở thành: \(f\left( {y + 64} \right) < 0\)

\( \Leftrightarrow {\log _{2020}}\left( {{y^2} + y + 64} \right) + {\log _{2021}}\left( {{y^2} + y + 64} \right) < {\log _4}64\)

\( \Leftrightarrow {\log _{2021}}\left( {{y^2} + y + 64} \right)\left( {{{\log }_{2020}}2021 + 1} \right) < 3\)

\( \Leftrightarrow {y^2} + y + 64 - {2021^{\frac{3}{{{{\log }_{2020}}2021 + 1}}}} < 0\)

\( \Leftrightarrow - 301,76 < y < 300,76\).

Mà \(y\) nguyên nên \(y \in \left\{ { - 301; - 300; \ldots ;299;300} \right\}\).

Vậy có 602 giá trị nguyên của \(y\) thỏa mãn yêu cầu.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×