Bài tập  /  Bài đang cần trả lời

Chọn ngẫu nhiên ba số đôi một khác nhau từ tập hợp {1; 2; 3; ...; 100} gồm 100 số nguyên dương đầu tiên. Tính xác suất để 3 số được chọn là độ dài 3 cạnh của một tam giác.

Chọn ngẫu nhiên ba số đôi một khác nhau từ tập hợp {1; 2; 3; ...; 100} gồm 100 số nguyên dương đầu tiên. Tính xác suất để 3 số được chọn là độ dài 3 cạnh của một tam giác.
1 Xem trả lời
Hỏi chi tiết
21
0
0
Nguyễn Thanh Thảo
11/09/2024 12:22:33

Lời giải

Số phần tử của không gian mẫu là \(n\left( \Omega \right) = C_{100}^3\).

Ta tính số cáchchonj ba phần tử khác nhau của tập hợp A sao cho ba phần tủ nhày là độ dài ba cạnh một tam giác.

Giả sử ba số cần chọn là x < y < z. Khi đó ta phải có x > z − y.

Đặt k = z − y; 1 £ k £ 49.

Với k = 1, ta có x Î {2; 3; …; 98}. Ta xét từng trường hợp như sau:

+ x = 2 các bộ số (y; z) lượt là (3; 4), (4; 5), …, (99; 100) có 97 bộ.

+ x = 3 các bộ số (y; z) lượt là (4; 5), (5; 6), …, (99; 100) có 96 bộ.

+ x = 8 chỉ có 1 bộ số (y; z) = (99; 100) thỏa mãn.

Do đó số bộ ba trong trường hợp này là \(1 + 2 + ... + 97 = \frac{2} = 97.49\).

Với k = 2, ta có x Î {3; 4; …; 97}. Ta xét từng trường hợp như sau:

+ x = 3 các bộ số (y; z) lượt là (4; 6), (5; 7), …, (98; 100) có 95 bộ.

+ x = 97 chỉ có 1 bộ số (y; z) = (98; 100) thỏa mãn.

Như vậy trường hợp này số bộ ba là \(1 + 2 + ... + 95 = \frac{2} = 95.48\).

Lập luận tương tự đến trường hợp k = 49 thì x = 50 và chỉ có một bộ số (y; z) thỏa mãn là (51; 100).

Vậy số cách chọn bộ ba số thỏa mãn yêu cầu là \(n = \sum\limits_{k = 1}^{49} {\left( {2k - 1} \right)} = 79625\)

Xác suất của biến cố cần tìm là \[P = \frac{n}{{n\left( \Omega \right)}} = \frac{{C_{100}^3}} = \frac\].

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Câu hỏi liên quan

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×