Bài tập  /  Bài đang cần trả lời

Đặt điện áp \(u = {U_0}\cos \omega t\) vào hai đầu đoạn mạch AB như hình bên. Trong đó, cuộn cảm thuần có độ tự cảm L; tụ điện có điện dung C; X là đoạn mạch chứa các phần tử có \({R_1},{L_1},{C_1}\) mắc nối tiếp. Biết \(2{\omega ^2}LC = 1\), các điện áp hiệu dụng: \({U_{AN}} = 120V;{U_{MB}} = 90V\), góc lệch pha giữa \({u_{AN}}\) và \({u_{MB}}\) là \(\frac{{5\pi }}\). Hệ số công suất của X là

Đặt điện áp \(u = {U_0}\cos \omega t\) vào hai đầu đoạn mạch AB như hình bên. Trong đó, cuộn cảm thuần có độ tự cảm L; tụ điện có điện dung C; X là đoạn mạch chứa các phần tử có \({R_1},{L_1},{C_1}\) mắc nối tiếp. Biết \(2{\omega ^2}LC = 1\), các điện áp hiệu dụng: \({U_{AN}} = 120V;{U_{MB}} = 90V\), góc lệch pha giữa \({u_{AN}}\) và \({u_{MB}}\) là \(\frac{{5\pi }}\). Hệ số công suất của X là

1 Xem trả lời
Hỏi chi tiết
11
0
0
Nguyễn Thị Thảo Vân
11/09/2024 13:05:21

Đáp án: 0.868

Phương pháp giải:

+ Hệ số công suất của đoạn mạch X: \(\cos {\varphi _X}\)

Trong đó: \({\varphi _X} = {\varphi _{uX}} - {\varphi _i}\)

+ Pha ban đầu của i: \({\varphi _i} = {\varphi _{uC}} + \frac{\pi }{2} = {\varphi _{uL}} - \frac{\pi }{2}\)

Giải chi tiết:

Ta có: \(2LC{\omega ^2} = 1 \Leftrightarrow \frac{{2\omega L}}{{\frac{1}{{\omega C}}}} = 1 \Rightarrow 2{Z_L} = {Z_C}\)

\( \Rightarrow 2{u_L} = - {u_C} \Rightarrow 2{u_L} + {u_C} = 0\)

\( \Rightarrow 2{u_{AN}} + {u_{MB}} = 2{u_L} + 2{u_X} + {u_X} + {u_C}\)

\( \Rightarrow 2{u_{AN}} + {u_{MB}} = 3{u_X}\)

\( \Rightarrow {u_X} = \frac{{2{u_{AN}} + {u_{MB}}}}{3}\)

Giả sử \({\varphi _{uMB}} = 0 \Rightarrow {\varphi _{uAN}} = \frac{{5\pi }}\)

\( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{{u_{MB}} = 90\sqrt 2 \cos \left( {\omega t} \right)}\\{{u_{AN}} = 120\sqrt 2 .\cos \left( {\omega t + \frac{{5\pi }}} \right)}\end{array}} \right.\)

\( \Rightarrow {u_X} = \frac{{240\sqrt 2 \angle \frac{{5\pi }} + 90\sqrt 2 \angle 0}}{3} = 130,7\angle 0,99\)

\( \Rightarrow {\varphi _{uX}} = 0,99rad\)

Lại có: \({u_C} = {u_{MB}} - {u_X} = 122,6\angle - 1,1\)

\( \Rightarrow {\varphi _i} = {\varphi _{uC}} + \frac{\pi }{2} = - 1,1 + \frac{\pi }{2} \approx 0,47079rad\)

\( \Rightarrow \) Độ lệch pha giữa \({u_X}\) và \(i\) là:

\({\varphi _X} = {\varphi _{uX}} - {\varphi _i} = 0,99 - 0,47079 = 0,51921rad\)

\( \Rightarrow \) Hệ số công suất của X là: \(\cos {\varphi _X} = \cos 0,51921 = 0,868\).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×