Trong Hình 9.1, ABC là tam giác không cân; M, N, P lần lượt là trung điểm của BC, CA, AB. Hãy tìm trong hình năm tam giác khác nhau mà chúng đôi một đồng dạng với nhau. Giải thích vì sao chúng đồng dạng.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Xét hai tam giác APN và MNP, ta có:
APN^=MNP^,ANP^=MPN^ (các góc tương ứng), PN là cạnh chung.
Vậy ΔAPN=ΔMNP (g.g). Tương tự ΔPBM=ΔMNP,ΔNMC=ΔMNP.
Do PN là đường trung bình của tam giác ABC nên PN // BC.
Suy ra ∆APN ᔕ ∆ABC.
Vậy bốn tam giác APN, PBM, NMC, MNP đôi một bằng nhau và cùng đồng dạng với tam giác ABC. Do đó cả năm tam giác này đôi một đồng dạng với nhau.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |