Cho đường tròn (O) và dây AB khác đường kính. Kẻ bán kính OC đi qua trung điểm I của đoạn thẳng AB. Vẽ đường tròn (C; CI). Kẻ tiếp tuyến BD của đường tròn (C) với D là tiếp điểm và D khác I. Chứng minh:
a) Bốn đỉnh của tứ giác BDCI cùng nằm trên một đường tròn;
b) BD là tiếp tuyến của đường tròn (O).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Gọi M là trung điểm của đoạn thẳng BC, khi đó MB=MC=12BC. 1
Xét ∆OAB có OA = OB nên ∆OAB cân tại O, suy ra đường trung tuyến OI đồng thời là đường cao của tam giác, hay OC ⊥ AB tại I.
Ta có ∆BIC vuông tại I có IM là đường trung tuyến ứng với canh huyền BC nên IM=12BC. 2
Ta có ∆BDC vuông tại D có DM là đường trung tuyến ứng với canh huyền BC nên DM=12BC. 3
Từ (1), (2) và (3), suy ra IM=DM=CM=BM=BC2.
Do đó bốn đỉnh của tứ giác BDCI cùng nằm trên đường tròn đường kính BC.
b) Đường tròn (C) có hai tiếp tuyến BI, BD cắt nhau tại B nên CB là tia phân giác của góc ICD, hay BCI^=BCD^.
Mặt khác, ∆OBC cân tại O (do OB = OC) nên OBC^=OCB^ hay OBC^=BCI^.
Suy ra OBC^=BCD^, mà hai góc này ở vị trí so le trong nên OB // CD.
Lại có BD ⊥ CD nên BD ⊥ OB tại B, mà B nằm trên đường tròn (O)
Vậy BD là tiếp tuyến của đường tròn (O).
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |