Cho hình thoi ABCD có \[\widehat A = 60^\circ \]. Qua C kẻ đường thẳng d không cắt hình thoi nhưng cắt đường thẳng AB tại E và cắt đường thẳng AD tại F.
Chứng minh \[\Delta BDE\sim\Delta DBF\]
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Từ \[BE.DF = B{D^2}\] suy ra \[\frac = \frac\]
Do \[\widehat A = 60^\circ \] nên \[\Delta ABD\] đều, và từ đó ta tính được \[\widehat {EBD} = \widehat {BDF} = 120^\circ \]
Xét \[\Delta BDE\] và \[\Delta DBF\] có: \[\frac = \frac;\,\,\widehat {EBD} = \widehat {BDF}\] nên \[\Delta BDE\sim\Delta DFB\] (c.g.c) (đpcm).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |