Cho hình thang cân ABCD có AC vuông góc AD. Tính chu vi và diện tích biết AB = 5cm, CD = 11cm.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Kẻ AH, BK vuông góc DC
AB // DC nên AH, BK vuông góc AB.
Có: ABHK là hình chữ nhật vì \(\widehat {AHK} = \widehat {BKH} = \widehat {HAB} = 90^\circ \)
Suy ra: AH = BK và AB = HK = 5cm
Xét tam giác ADH và tam giác BKC có:
AD = BC
\(\widehat {AHD} = \widehat {BKC} = 90^\circ \)
AH = BK
⇒ ∆AHD = ∆BKC (c.g.c)
⇒ DH = KC
Mà DH + KC + HK = DC
Suy ra: DH = HK = (DC – HK) : 2 = (DC – AB) : 2 = (11 – 5) : 2 = 3(cm)
HC = DC – DH = 11 – 3 = 8(cm)
Áp dụng hệ thúc lượng trong tam giác ADC vuông ta có:
AH2 = DH.HC = 8.3 = 24
AH = \(\sqrt {24} \left( {cm} \right)\)
Áp dụng định lý Pytago trong tam giác ADH vuông tại H:
AD2 = AH2 + DH2
AD = \(\sqrt {24 + {3^2}} = \sqrt {33} \)
Chu vi hình thang là: AB + BC + CD + AD = 5 + \(2\sqrt {33} \) + 11 = 16 + \(2\sqrt {33} \)
SABCD = \(\frac{{\left( {AB + CD} \right).AH}}{2} = \frac{{16\sqrt {24} }}{2} = 8\sqrt {24} = 16\sqrt 6 \left( {c{m^2}} \right)\).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |