Xác định parabol y = ax2 – bx + 1 trong mỗi trường hợp sau:
a) Có đỉnh I(−2; 37).
b) Có trục đối xứng là x = −1 và tung độ của đỉnh bằng 5.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Xét parabol y = ax2 − bx + 1 với a ¹ 0:
a) Parabol có đỉnh I(−2; 37) nghĩa là \[\frac{b} = - 2 \Leftrightarrow b = - 4a\;\left( 3 \right)\]
Mặt khác ta thay tọa độ điểm I vào parabol y = ax2 − bx + 1, ta được:
37 = a.(−2)2 − b.(−2) + 1
Û 4a + 2b = 36 hay 2a + b = 18 (4)
Từ (3) và (4) ta có hệ phương trình:
\(\left\{ \begin{array}{l}b = - 4a\\2a + b = 18\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = - 4a\\2a - 4a = 18\end{array} \right.\)
\(\left\{ \begin{array}{l}b = - 4a\\ - 2a = 18\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = 36\\a = - 9\end{array} \right.\) (thỏa mãn điều kiện)
Vậy parabol cần tìm là: y = −9x2 − 36x + 1.
b) Parabol có trục đối xứng là \(x = - 1 \Leftrightarrow \frac{b} = - 1 \Leftrightarrow b = - 2a\) (5)
Thay x = −1 và y = 5 vào parabol y = ax2 − bx + 1, ta được:
5 = a.(−1)2 − b.(−1) + 1
Û a + b = 4 (6)
Từ (5) và (6) ta có hệ phương trình:
\(\left\{ \begin{array}{l}b = 2a\\a + b = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = - 2a\\a - 2a = 4\end{array} \right.\)
\(\left\{ \begin{array}{l}b = - 2a\\ - a = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = 8\\a = - 4\end{array} \right.\) (thỏa mãn điều kiện)
Vậy parabol cần tìm là: y = −4x2 − 8x + 1.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |