Cho nửa đường tròn tâm O đường kính AB. Gọi C là 1 điểm nằm trên nửa đường tròn (O) (C khác A và B). Gọi H là hình chiếu vuông góc của C trên AB, D là điểm đối xứng của A qua C, I là trung điểm của CH, J là trung điểm của DH.
a) Chứng minh \[\widehat {CIJ} = \widehat {CBH}\].
b) Chứng minh DCJH ᔕ DHIB.
c) Gọi E là giao điểm của HD và BI. Chứng minh HE.HD = HC2.Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Ta có: \[\widehat {CBH} = \widehat {ACH}\] (cùng phụ \[\widehat {HCB}\]) (1)
Xét DCDH ta có:
I và J lần lượt là trung điểm của CH và DH
Þ IJ là đường trung bình của DCHD
Þ IJ // CD Þ IJ // AC Þ \[\widehat {CIJ} = \widehat {ACH}\] (so le trong) (2)
Từ (1) và (2) Þ \[\widehat {CIJ} = \widehat {CBH}\] (đpcm)
b) Thấy CJ là đường trung bình của DADH Þ \[\frac = \frac{1}{2}\]
Mà \[\frac = \frac{1}{2}\] (Do I là trung điểm của CH) Þ \[\frac = \frac \Rightarrow \frac = \frac\]
Dễ chứng minh DAHC ᔕ DCHB \[ \Rightarrow \frac = \frac \Rightarrow \frac = \frac\]
Lại có: CJ // AB và CH ^ AB Þ CH ^ CJ Þ \[\widehat {JCH} = 90^\circ \]
Xét DCJH và DHIB có:
\[\widehat {JCH} = \widehat {CHB}\]
\[\frac = \frac\]
Þ DCJH ᔕ DHIB (c. g. c) (đpcm)
c) Ta có: \[\widehat {HIB} + \widehat {HBI} = 90^\circ \].
Mà \[\widehat {HBI} = \widehat {CHJ}\] (do DCJH ᔕ DHIB)
Þ \[\widehat {HIB} + \widehat {CHJ} = 90^\circ \]
Þ DHEI vuông tại E Þ \[\widehat {IEJ} = 90^\circ \]
Xét tứ giác CIEJ: \[\widehat {IEJ} = \widehat {ICJ} = 90^\circ \]Þ Tứ giác CIEJ nội tiếp đường tròn
Þ \[\widehat {ECI} = \widehat {{\rm{EJI}}}\] hay \[\widehat {ECH} = \widehat {HJI}\]. Mà \[\widehat {HJI} = \widehat {HDC}\](vì IJ // CD) Þ \[\widehat {ECH} = \widehat {HDC}\]
Xét DHEC và DHCD có:
\[\widehat {ECH} = \widehat {CDH}\] (cmt)
\[\widehat {CHD}\]: chung
Do đó DHEC ᔕ DHCD (g.g)
Suy ra: \[\frac = \frac \Rightarrow HE.HD = H{C^2}\] (đpcm).
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |