Bài tập  /  Bài đang cần trả lời

a) Cho hình bình hành ABCD, O là giao điểm của hai đường chéo AC và BD. Chỉ ra phép quay ngược chiều tâm O sao cho phép quay đó biến mỗi điểm C và D thành điểm đối xứng với nó qua tâm O. b) Cho lục giác đều A1A2A3A4A5A6 tâm O. Chỉ ra phép quay thuận chiều tâm O sao cho phép quay đó biến mỗi điểm A3, A4, A5 thành điểm đối xứng với nó qua tâm O.

a) Cho hình bình hành ABCD, O là giao điểm của hai đường chéo AC và BD. Chỉ ra phép quay ngược chiều tâm O sao cho phép quay đó biến mỗi điểm C và D thành điểm đối xứng với nó qua tâm O.

b) Cho lục giác đều A1A2A3A4A5A6 tâm O. Chỉ ra phép quay thuận chiều tâm O sao cho phép quay đó biến mỗi điểm A3, A4, A5 thành điểm đối xứng với nó qua tâm O.

1 Xem trả lời
Hỏi chi tiết
8
0
0

a)

Vì ABCD là hình bình hành nên O là trung điểm của hai đường chéo AC và BD.

Do đó A, B lần lượt là điểm đối xứng với C, D qua điểm O.

Ta có OA = OC và \(\widehat {COA} = 180^\circ \) nên tia OC quay đến tia OA ngược chiều kim đồng hồ tạo thành một cung có số đo bằng 180°.

Như vậy, phép quay ngược chiều 180° tâm O biến điểm C thành điểm A đối xứng với nó qua tâm O.

Tương tự, ta có OB = OD và \(\widehat {DOB} = 180^\circ \) nên phép quay ngược chiều 180° tâm O biến điểm D thành điểm B đối xứng với nó qua tâm O.

b)

Vì A1A2A3A4A5A6 là hình lục giác đều nên O là trung điểm của ba đường chéo A1A4, A2A5 và A3A6.

Do đó A6, A1, A2 lần lượt là điểm đối xứng với A3, A4, A5 qua điểm O.

Ta có OA6 = OA3 và \(\widehat {{A_3}O{A_6}} = 180^\circ \) nên tia OA3 quay đến tia OA6 thuận chiều kim đồng hồ tạo thành một cung có số đo bằng 180°.

Như vậy, phép quay thuận chiều 180° tâm O biến điểm A3 thành điểm A6 đối xứng với nó qua tâm O.

Tương tự, ta chứng minh được phép quay thuận chiều 180° tâm O biến mỗi điểm A4, A5 lần lượt thành điểm A1, A2 đối xứng với mỗi điểm qua tâm O.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×