Công ty X muốn thiết kế các hộp chứa sản phẩm dạng hình trụ có nắp với dung tích bằng 330 cm3, bán kính đáy x cm, chiều cao ℎ cm. Khi thiết kế, công ty X luôn đặt mục tiêu sao cho vật liệu làm vỏ hộp là ít nhất, nghĩa là diện tích toàn phần hình trụ là nhỏ nhất.
Kéo số ở các ô vuông thả vào vị trí thích hợp trong các câu sau :
Để công ty X tiết kiệm được vật liệu nhất thì bán kính x bằng _______ cm và chiều cao ℎ bằng _______ cm.
(Kết quả làm tròn đến chữ số thập phân thứ ba).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Công ty X muốn thiết kế các hộp chứa sản phẩm dạng hình trụ có nắp với dung tích bằng 330 cm3, bán kính đáy x cm, chiều cao ℎ cm. Khi thiết kế, công ty X luôn đặt mục tiêu sao cho vật liệu làm vỏ hộp là ít nhất, nghĩa là diện tích toàn phần hình trụ là nhỏ nhất.
Kéo số ở các ô vuông thả vào vị trí thích hợp trong các câu sau :
Để công ty X tiết kiệm được vật liệu nhất thì bán kính x bằng 3,745 cm và chiều cao ℎ bằng 7,490 cm.
(Kết quả làm tròn đến chữ số thập phân thứ ba).
Giải thích
Ta có: \(V = \pi {x^2}h\).
Theo giả thiết thể tích hình trụ bằng \(330\;{\rm{c}}{{\rm{m}}^3}\) nên \(V = 330 \Leftrightarrow \pi {x^2}h = 330 \Leftrightarrow h = \frac{{\pi {x^2}}}\)
Chi phí sản xuất là thấp nhất khi diện tích toàn phần hình trụ nhỏ nhất.
Ta có: \({S_{tp}} = {S_{xq}} + 2.{S_d} = 2\pi xh + 2\pi {x^2} = 2\pi \left( {{x^2} + \frac{{\pi x}}} \right)\).
Áp dụng bất đẳng thức Cauchy cho 3 số dương ta có:
\({x^2} + \frac{{\pi x}} = {x^2} + \frac{{\pi x}} + \frac{{\pi x}} \ge 3\sqrt[3]{{\frac{{27225.{x^2}}}{{{\pi ^2}.{x^2}}}}} = 3\sqrt[3]{{\frac{{{\pi ^2}}}}}\)
Dấu bằng xảy ra khi \({x^2} = \frac{{\pi x}} \Leftrightarrow x = \sqrt[3]{{\frac{\pi }}} \approx 3,745.\)
Để công ty X tiết kiệm được vật liệu nhất cần sản xuất hộp với kích thước \(h \approx 7,490\;{\rm{cm}}\) và \(x \approx 3,745\;{\rm{cm}}\).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |