Kéo số ở các ô vuông thả vào vị trí thích hợp trong các câu sau:
Cho hình lập phương \(ABCD.A'B'C'D'\) cạnh \(a\). Lấy hai điểm \(M\) và \(N\) theo thứ tự di động trên \(AC\) và \(A'B\) sao cho \(AM = A'N = t\,\,\left( {0 \le t \le a\sqrt 2 } \right)\). Giá trị nhỏ nhất của \(MN\) bằng _______, khi đo góc (MN, AC) bằng _______.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Cho hình lập phương \(ABCD.A'B'C'D'\) cạnh \(a\). Lấy hai điểm \(M\) và \(N\) theo thứ tự di động trên \(AC\) và \(A'B\) sao cho \(AM = A'N = t\,\,\left( {0 \le t \le a\sqrt 2 } \right)\). Giá trị nhỏ nhất của \(MN\) bằng \(\frac{a}{{\sqrt 2 }}\), khi đo góc (MN, AC) bằng 60o.
Giải thích
Kẻ \(MJ \bot AB\) suy ra \(AJ = \frac{t}{{\sqrt 2 }}\). Kẻ \(JI \bot A'B'\). Dễ thấy \(J,N,I\) thẳng hàng.
Ta có:
\(M{N^2} = M{J^2} + J{N^2} = \frac{{{t^2}}}{2} + {\left( {a - \frac{t}{{\sqrt 2 }}} \right)^2} = {t^2} - a\sqrt 2 t + {a^2} = {\left( {t - \frac{a}{{\sqrt 2 }}} \right)^2} + \frac{{{a^2}}}{2} \ge \frac{{{a^2}}}{2}\)
Suy ra \(MN \ge \frac{a}{{\sqrt 2 }}\). Dấu "=" xảy ra khi \(t = \frac{a}{{\sqrt 2 }}\). Khi đó \({M_s}N\) lần lượt là trung điểm của \(AC\) và \(A'B\).
Vộy giá trị nhỏ nhất của \(MN\) là \(\frac{a}{{\sqrt 2 }}\).
Dễ thấy khi đó \(MN//B'C\left( {//A'D} \right)\) nên \(\left( {MN,AC} \right) = \left( {B'C,AC} \right) = \widehat {B'CA}\).
Mà ta có tam giác \(AB'C\) đều nên \(\widehat {B'CA} = {60^ \circ }\).
Do đó \(\left( {MN,AC} \right) = {60^ \circ }\).
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |