Cho hình lăng trụ \(ABCD.A'B'C'D'\) có đáy \(ABCD\) là hình thoi cạnh \(2,\widehat {BAD} = {120^ \circ }\). Biết các đường thẳng \(A'A,A'B,A'C\) cùng tạo với mặt phẳng \(\left( {ABCD} \right)\) một góc bằng \({60^ \circ }\). Gọi \(M,N\) lần lượt là trung điểm của \(BB',CC'\).
Kéo số ở các ô vuông thả vào vị trí thích hợp trong các câu sauThể tích khối lăng trụ \(ABCD.A'B'C'D'\) bằng _______.
Khoảng cách giữa \(AD\) và mặt phẳng \(\left( {D'MN} \right)\) bằng _______.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Đáp án
Thể tích khối lăng trụ \(ABCD.A'B'C'D'\) bằng \(4\sqrt 3 \).
Khoảng cách giữa \(AD\) và mặt phẳng \(\left( {D'MN} \right)\) bằng \(\frac{{6\sqrt 7 }}{7}\).
Giải thích
Vị trí thả 1: \(4\sqrt 3 \)
Vị trí thả 2: \(\frac{{6\sqrt 7 }}{7}\)
Tính thể tích khối lăng trụ \(ABCD.A'B'C'D'\).
Gọi \(I\) là trung điểm của \(BC\).
Gọi \(H\) là hình chiếu vuông góc của điểm \(A'\) trên mặt phẳng \(\left( {ABCD} \right)\) vì các đường thẳng \(A'A\), \(A'B,A'C\) cùng tạo với mặt phẳng \(\left( {ABCD} \right)\) một góc bằng \({60^ \circ }\) nên \[\widehat {HAA'} = \widehat {HBA'} = \widehat {HCA'} = {60^ \circ }\].
\( \Rightarrow {\rm{\Delta }}A'HA = {\rm{\Delta }}A'HB = {\rm{\Delta }}A'HC\) (g.c.g) \( \Rightarrow HA = HB = HC\).
\( \Rightarrow H\) là tâm đường tròn ngoại tiếp .
Vì \(ABCD\) là hình thoi có \(\widehat {BAD} = {120^ \circ }\)
\( = > \widehat {\left( {BAC} \right)} = {60^0} \Rightarrow \Delta ABC\) đều
\( \Rightarrow H\) là trọng tâm .
Ta có \(AI = \frac{{2.\sqrt 3 }}{2} = \sqrt 3 \Rightarrow AH = \frac{{2\sqrt 3 }}{3} \Rightarrow A'H = AH{\rm{tan}}\widehat {A'AH} = 2\),
\({S_{ABCD}} = AB.AD.{\rm{sin}}\widehat {BAD} = \frac{{{2^2}\sqrt 3 }}{2} = 2\sqrt 3 \).
Thể tích khối lăng trụ \(ABCD.A'B'C'D'\) là \(V = A'H.{S_{ABCD}} = \frac{{{2^3}\sqrt 3 }}{2} = 4\sqrt 3 \).
Tính khoảng cách giữa đường thẳng \(AD\) và mặt phẳng \(\left( {D'MN} \right)\)
Do \(MN//A'D'\) nên \(A'\) thuộc mặt phẳng \(\left( {D'MN} \right)\)
Gọi \(E = A'M \cap AB,F = D'N \cap DC \Rightarrow EF//BC//AD\) và \(B,C\) lần lượt là trung điểm của các đoạn thẳng \(AE,DF\). Suy ra \(A,H,F\) thẳng hàng và \(AF = \frac{3}{2}HF\).
Ta có \(AD//\left( {D'MN} \right) \Rightarrow d\left( {AD,\left( {D'MN} \right)} \right) = d\left( {A,\left( {A'EF} \right)} \right) = \frac{3}{2}d\left( {H,\left( {A'EF} \right)} \right)\).
Do \(AH \bot BC \Rightarrow AH \bot EF \Rightarrow EF \bot \left( {A'HF} \right) \Rightarrow \left( {A'EF} \right) \bot \left( {A'HF} \right)\)
Trong tam giác \(A'HF\), kẻ \(HK \bot A'F \Rightarrow HK \bot \left( {A'EF} \right) \Rightarrow d\left( {H,\left( {A'EF} \right)} \right) = HK\)
Ta có \(A'H = 2,HF = 2HA = \frac{{4\sqrt 3 }}{3},\frac{1}{{H{K^2}}} = \frac{1}{{HA{'^2}}} + \frac{1}{{H{F^2}}} = \frac{1}{4} + \frac{3} = \frac{7} \Rightarrow HK = \frac{{4\sqrt 7 }}{7}\).
\( \Rightarrow d\left( {AD,\left( {D'MN} \right)} \right) = \frac{3}{2}HK = \frac{{6\sqrt 7 }}{7}\).
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |