Điền các số nguyên dương thích hợp vào các chỗ trống.
Trong không gian \(Oxyz\), cho hai điểm \({F_1}\left( { - 3;0;0} \right),{F_2}\left( {3;0;0} \right)\). Gọi \(\left( E \right)\) là tập hợp các điểm \(M\left( {x;y;z} \right)\) trong không gian thoả mãn điều kiện \(M{F_1} + M{F_2} = 10\). Giá trị của \(\alpha \) bằng (1) ______, trong đó \(\alpha \) thoả mãn \(M{F_1}{\;^2} - M{F_2}{\;^2} = \alpha .x\). Giá trị của \(\beta \) bằng (2) _______, trong đó \(\beta \) thoả mãn \(M{F_1} = \beta + \frac{5}\). Phương trình của mặt \(\left( E \right)\) là \(\frac{{{x^2}}}{a} + \frac{{{y^2}}}{b} + \frac{{{z^2}}}{c} = 1\), giá trị của a bằng (3) _______, giá trị của \(b\) bằng (4) _________, giá trị của \(c\) bằng (5) ________.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Đáp án
Trong không gian \(Oxyz\), cho hai điểm \({F_1}\left( { - 3;0;0} \right),{F_2}\left( {3;0;0} \right)\). Gọi \(\left( E \right)\) là tập hợp các điểm \(M\left( {x;y;z} \right)\) trong không gian thoả mãn điều kiện \(M{F_1} + M{F_2} = 10\). Giá trị của \(\alpha \) bằng (1) ___12___, trong đó \(\alpha \) thoả mãn \(M{F_1}{\;^2} - M{F_2}{\;^2} = \alpha .x\). Giá trị của \(\beta \) bằng (2) ___5___, trong đó \(\beta \) thoả mãn \(M{F_1} = \beta + \frac{5}\). Phương trình của mặt \(\left( E \right)\) là \(\frac{{{x^2}}}{a} + \frac{{{y^2}}}{b} + \frac{{{z^2}}}{c} = 1\), giá trị của a bằng (3) ___25___, giá trị của \(b\) bằng (4) ___16___, giá trị của \(c\) bằng (5) ___16___.
Giải thích
Ta có \(M{F_1}^2 - M{F_2}^2 = {(x + 3)^2} + {y^2} + {z^2} - \left[ {{{(x - 3)}^2} + {y^2} + {z^2}} \right] = 12x\)
\( \Rightarrow M{F_1} - M{F_2} = \frac{{MF_1^2 - MF_2^2}}{{M{F_1} + M{F_2}}} = \frac{6}{5}x\)
\( \Rightarrow M{F_1} = \frac{{\left( {M{F_1} - M{F_2}} \right) + \left( {M{F_1} + M{F_2}} \right)}}{2} = 5 + \frac{3}{5}x\)
\( \Rightarrow {(x + 3)^2} + {y^2} + {z^2} = 25 + 6x + \frac{9}{x^2}\)
\( \Rightarrow \frac{{{x^2}}} + \frac{{{y^2}}} + \frac{{{z^2}}} = 1.\)
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |