LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Cho ΔABC vuông tại A. Biết AB = 6 cm, ∠B = 60°. Tính số độ góc ∠C và độ dài cạnh BC

----- Nội dung ảnh -----
Câu 6. Cho ΔABC vuông tại A. Biết AB = 6 cm, ∠B = 60°. Tính số độ góc ∠C và độ dài cạnh BC.
1 trả lời
Hỏi chi tiết
21
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Trong tam giác vuông ABC, với A là góc vuông, ta có:

- \( AB = 6 \) cm
- \( \angle B = 60^\circ \)

**Bước 1: Tính số độ góc \( \angle C \)**

Sử dụng tổng các góc trong tam giác, ta có:
\[
\angle A + \angle B + \angle C = 180^\circ
\]
Vì \( \angle A = 90^\circ \) và \( \angle B = 60^\circ \), vậy:
\[
90^\circ + 60^\circ + \angle C = 180^\circ
\]
\[
\angle C = 180^\circ - 150^\circ = 30^\circ
\]

**Bước 2: Tính độ dài cạnh \( BC \)**

Ta có thể sử dụng định nghĩa sin trong tam giác vuông:
\[
\sin(\angle B) = \frac{AC}{BC}
\]
Ngoài ra ta biết rằng:
\[
BC = \frac{AB}{\sin(\angle B)} = \frac{6}{\sin(60^\circ)}
\]

Tính giá trị của \( \sin(60^\circ) \):
\[
\sin(60^\circ) = \frac{\sqrt{3}}{2}
\]

Thay vào công thức trên:
\[
BC = \frac{6}{\frac{\sqrt{3}}{2}} = 6 \times \frac{2}{\sqrt{3}} = \frac{12}{\sqrt{3}} = 4\sqrt{3}
\]

**Kết luận:**
- \( \angle C = 30^\circ \)
- \( BC = 4\sqrt{3} \) cm (khoảng 6.93 cm).
1
0
Minh Tuấn
30/10 20:36:11

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Vật lý Lớp 9 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư