Một du khách vào hội chợ và chơi trò chơi ném vòng trúng thưởng. Lần đầu du khách mua 1 lượt ném vòng với giá 1000 đồng, kể từ lần sau tiền mua số lượt ném vòng gấp đôi số tiền lần trước. Người đó thua 10 lần liên tiếp và thắng ở 2 lần cuối. Biết mỗi lần thắng, giá trị phần thưởng của người chơi nhận được gấp đôi số tiền mua ban đầu (không kể số tiền đã đặt). Giá trị phần thưởng cuối cùng người đó nhận được là (1) ___ đồng.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Đáp án: “5121000”
Giải thích
Số tiền mỗi lần du khách mua số lượt ném vòng là một số hạng của một cấp số nhân có \({u_1} = 1000\) và công bội \(q = 2\).
Du khách thua trong 10 lần đầu tiên nên tổng số tiền du khách đã bỏ ra mua lượt ném vòng là
\({S_{10}} = {u_1} + {u_2} + \ldots + {u_{10}} = \frac{{{u_1}\left( {1 - {q^{10}}} \right)}} = 1023000\) (đồng).
Giá trị phần thưởng mà du khách thắng trong 2 lần cuối (lần thứ 11 và 12) là
\(2{u_{11}} + 2{u_{12}} = 2{u_1}\left( {{q^{10}} + {q^{11}}} \right) = 6144000\) (đồng).
Ta có \(2{u_{11}} + 2{u_{12}} - {S_{10}} = 5121000\) nên du khách nhận được 5121000 đồng.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |