Bài tập  /  Bài đang cần trả lời

Cho \(x,y,z,a,b,c\) là ba số thực thay đổi thỏa mãn \({x^2} + {(y - 1)^2} + {(z - 1)^2} = 1\) và \(a + b + c = 4\). Giá trị nhỏ nhất của \(P = {(x - a)^2} + {(y - b)^2} + {(z - c)^2}\) bằng \(\frac{q}\) (phân số tối giản với \(q > 0\)). Kéo số ở các ô vuông thả vào vị trí thích hợp trong các câu sau Giá trị của \(k\) bằng __. Giá trị của \(p\) bằng __. Giá trị của \(q\) bằng __.

Cho \(x,y,z,a,b,c\) là ba số thực thay đổi thỏa mãn \({x^2} + {(y - 1)^2} + {(z - 1)^2} = 1\) và \(a + b + c = 4\). Giá trị nhỏ nhất của \(P = {(x - a)^2} + {(y - b)^2} + {(z - c)^2}\) bằng \(\frac{q}\) (phân số tối giản với \(q > 0\)).

Kéo số ở các ô vuông thả vào vị trí thích hợp trong các câu sau

Giá trị của \(k\) bằng __.

Giá trị của \(p\) bằng __.

Giá trị của \(q\) bằng __.

1 Xem trả lời
Hỏi chi tiết
9
0
0
Nguyễn Thị Nhài
11/11 12:30:55

Đáp án

Giá trị của \(k\) bằng 7 .

Giá trị của \(p\) bằng  -4 .

Giá trị của \(q\) bằng 3 .

Giải thích

Trong không gian với hệ trục tọa độ \(\left( {Oxyz} \right)\), gọi điểm \(M\left( {x;y;z} \right)\), điểm \(N\left( {a;b;c} \right)\).

Khi đó \(M\) thuộc mặt cầu tâm \(I\left( {0;1;1} \right)\), bán kính \(R = 1\) và \(N\) thuộc mặt phẳng \(\left( P \right):x + y + z - 4 = 0\).

Suy ra \(P = {(x - a)^2} + {(y - b)^2} + {(z - c)^2} = M{N^2}\left( 1 \right)\).

Ta có \(\left| {IN - MI} \right| \le MN\) suy ra \(MN\) nhỏ nhất khi \(M,N,I\) thẳng hàng.

Do vậy \(MN\) nhỏ nhất khi \(N\) là hình chiếu của \(I\) lên \(\left( P \right)\) và \(M\) là giao của \(IN\) và mặt cầu.

Khi đó \(MN = IN - R\).

Mà \(IN = {\rm{d}}\left( {I,\left( P \right)} \right) = \frac{{\left| {0 + 1 + 1 - 4} \right|}}{{\sqrt {1 + 1 + 1} }} = \frac{{2\sqrt 3 }}{3}\).

Suy ra \({P_{{\rm{min}}}} = {(IN - R)^2} = {\left( {\frac{{2\sqrt 3 }}{3} - 1} \right)^2} = \frac{3}\).

Vậy \(k = 7;{\rm{\;}}p =  - 4;q = 3\).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×