LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) và có đồ thị \(y = f'\left( x \right)\) như hình vẽ. Đặt \(g\left( x \right) = f\left( {x - m} \right) - \frac{1}{2}{(x - m - 1)^2} + 2023\), với \(m\) là tham số thực. Gọi \(S\) là tập hợp các giá trị nguyên dương của \(m\) để hàm số \(y = g\left( x \right)\) đồng biến trên khoảng \(\left( {5;6} \right)\). Tổng tất cả các phần tử trong \(S\) bằng (1) ________.

Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) và có đồ thị \(y = f'\left( x \right)\) như hình vẽ. Đặt \(g\left( x \right) = f\left( {x - m} \right) - \frac{1}{2}{(x - m - 1)^2} + 2023\), với \(m\) là tham số thực. Gọi \(S\) là tập hợp các giá trị nguyên dương của \(m\) để hàm số \(y = g\left( x \right)\) đồng biến trên khoảng \(\left( {5;6} \right)\). Tổng tất cả các phần tử trong \(S\) bằng (1) ________.

1 trả lời
Hỏi chi tiết
8
0
0
Nguyễn Thị Nhài
12/11 11:51:08

Đáp án: “14”

Giải thích

Xét hàm số \(g\left( x \right) = f\left( {x - m} \right) - \frac{1}{2}{(x - m - 1)^2} + 2023\).

\(g'\left( x \right) = f'\left( {x - m} \right) - \left( {x - m - 1} \right)\). Xét phương trình \(g'\left( x \right) = 0{\rm{\;}}\) (1).

Đặt \(x - m = t\), phương trình (1) trở thành \(f'\left( t \right) - \left( {t - 1} \right) = 0 \Leftrightarrow f'\left( t \right) = t - 1{\rm{\;}}\) (2).

Nghiệm của phương trình \(\left( 2 \right)\) là hoành độ giao điểm của hai đồ thị \(y = f'\left( t \right)\) và \(y = t - 1\).

Ta có đồ thị các hàm số \(y = f'\left( t \right)\) và \(y = t - 1\) như sau:

Căn cứ đồ thị các hàm số thì phương trình \(\left( 2 \right)\) có nghiệm là \(\left[ {\begin{array}{*{20}{c}}{t =  - 1}\\{t = 1}\\{t = 3}\end{array} \Rightarrow \left[ {\begin{array}{*{20}{l}}{x = m - 1}\\{x = m + 1}\\{x = m + 3}\end{array}} \right.} \right.\)

Ta có bảng biến thiên của \(y = g\left( x \right)\) như sau:

Để hàm số \(y = g\left( x \right)\) đồng biến trên khoảng \(\left( {5;6} \right)\) thì \(\left[ {\begin{array}{*{20}{l}}{\left\{ {\begin{array}{*{20}{l}}{m - 1 \le 5}\\{m + 1 \ge 6}\end{array}} \right.}\\{m + 3 \le 5}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{5 \le m \le 6}\\{m \le 2}\end{array}} \right.\)

Vì \(m \in \mathbb{N}{\rm{*}} \Rightarrow m \in \left\{ {1;2;5;6} \right\} \Rightarrow S = 14\).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Tổng hợp Lớp 12 mới nhất
Trắc nghiệm Tổng hợp Lớp 12 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư