Tính lực đẩy Ac si met tác dụng lên khối gỗ lớn. Tính trọng lượng riêng của gỗ làm hai khối lập phương đó Tham khảo câu trả lời từ Trợ lý ảo Lazi Để giải bài toán này, chúng ta cần tính lực đẩy Archimedes tác dụng lên khối gỗ lớn và trọng lượng riêng của gỗ làm hai khối lập phương. ### 1. Tính lực đẩy Archimedes \(A_c\) Lực đẩy Archimedes được tính theo công thức: \[ A_c = V \cdot d \] Trong đó: - \(V\) là thể tích của phần khối gỗ chìm trong nước, - \(d\) là trọng lượng riêng của nước (ở đây \(d = 10000 \, \text{N/m}^3\)). #### Thể tích khối gỗ lớn Giả sử khối gỗ lớn có nền hình chữ nhật với chiều dài \(l = 20 \, \text{cm}\), chiều rộng \(b = 10 \, \text{cm}\), và chiều cao chìm trong nước \(h = 18 \, \text{cm}\). \[ V = l \cdot b \cdot h = 0.2 \, \text{m} \cdot 0.1 \, \text{m} \cdot 0.18 \, \text{m} = 0.0036 \, \text{m}^3 \] #### Lực đẩy Archimedes \[ A_c = V \cdot d = 0.0036 \, \text{m}^3 \cdot 10000 \, \text{N/m}^3 = 36 \, \text{N} \] ### 2. Tính trọng lượng riêng của gỗ Để tính trọng lượng riêng của gỗ, ta sử dụng công thức cân bằng lực: \[ P = A_c \] Trong đó \(P\) là trọng lực của khối gỗ lớn. Trọng lực được tính theo công thức: \[ P = V_g \cdot \gamma_g \] Trong đó: - \(V_g\) là thể tích toàn bộ khối gỗ lớn, - \(\gamma_g\) là trọng lượng riêng của gỗ. #### Thể tích khối gỗ Giả sử khối gỗ có chiều cao \(H = 20\, \text{cm} = 0.2 \, \text{m}\) (chiều cao khối gỗ lớn). \[ V_g = l \cdot b \cdot H = 0.2 \, \text{m} \cdot 0.1 \, \text{m} \cdot 0.2 \, \text{m} = 0.004 \, \text{m}^3 \] #### Tính trọng lượng của khối gỗ \[ P = A_c \Rightarrow P = 36 \, \text{N} \] #### Trọng lượng riêng của gỗ \[ \gamma_g = \frac{P}{V_g} = \frac{36 \, \text{N}}{0.004 \, \text{m}^3} = 9000 \, \text{N/m}^3 \] ### Kết luận 1. Lực đẩy Archimedes tác dụng lên khối gỗ lớn là \(36 \, \text{N}\). 2. Trọng lượng riêng của gỗ là \(9000 \, \text{N/m}^3\).