Bài tập  /  Bài đang cần trả lời

Cho biểu thức A

Cho biểu thức A=\(\left(\frac{1}{x+2}-\frac{2x}{4-x^{2}}+\frac{1}{x-2}\right)\cdot \frac{{}^{\ \ }x^{2}-4x+4}{4x}\)
A) tìm ĐKXĐ của biểu thức A rút gọn bểu thức A
B) tính giá try của A khi x=-3
Tìm giá try nguyên của x để A có giá try nguyên
2 Xem trả lời
Hỏi chi tiết
32
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để giải bài toán này, ta sẽ thực hiện theo từng phần một cách chi tiết.

### A) Tìm ĐKXĐ của biểu thức \( A \) và rút gọn biểu thức \( A \)

Biểu thức \( A \) được cho là:
\[
A = \left(\frac{1}{x+2}-\frac{2x}{4-x^{2}}+\frac{1}{x-2}\right) \cdot \frac{x^{2}-4x+4}{4x}
\]

**Bước 1: Tìm ĐKXĐ**

Để tìm ĐKXĐ, ta xem xét các phân số trong biểu thức.

1. **Tử số**: \( x^2 - 4x + 4 = (x-2)^2 \), điều này không gây chia cho 0.
2. **Đặc điểm của các mệnh đề**:
- \( x + 2 \neq 0 \) → \( x \neq -2 \)
- \( x - 2 \neq 0 \) → \( x \neq 2 \)
- \( 4 - x^2 \neq 0 \) → \( x^2 \neq 4 \) → \( x \neq 2, -2 \)

**Kết luận**: ĐKXĐ là \( x \neq 2 \) và \( x \neq -2 \).

**Bước 2: Rút gọn biểu thức \( A \)**

Ta sẽ rút gọn từng phần trong ngoặc:

- \( \frac{2x}{4-x^2} = \frac{2x}{(2-x)(2+x)} = -\frac{2x}{(x-2)(x+2)} \)

Vì vậy, ta có:
\[
A = \left(\frac{1}{x+2} + \frac{2x}{(x-2)(x+2)} + \frac{1}{x-2}\right) \cdot \frac{(x-2)^2}{4x}
\]

Ta tìm mẫu chung cho các phân số:
\[
\frac{(x-2) + 2x + (x+2)}{(x-2)(x+2)} = \frac{4x}{(x-2)(x+2)}
\]

Chúng ta có:
\[
A = \frac{4x}{(x-2)(x+2)} \cdot \frac{(x-2)^2}{4x}
\]

Sau khi rút gọn:
\[
A = \frac{(x-2)}{(x+2)}
\]

### B) Tính giá trị của \( A \) khi \( x = -3 \)

Bây giờ ta thay \( x = -3 \) vào biểu thức \( A \):
\[
A = \frac{-3-2}{-3+2} = \frac{-5}{-1} = 5
\]

### C) Tìm giá trị nguyên của \( x \) để \( A \) có giá trị nguyên

Để \( A = \frac{x-2}{x+2} \) là số nguyên, ta phải kiểm tra điều kiện về chính nó:
\[
A = k \implies x-2 = k(x+2) \implies x - kx = 2k + 2 \implies x(1-k) = 2k + 2
\]

Vì vậy:
\[
x = \frac{2(k + 1)}{1 - k}
\]

Ta cần \( 1 - k \neq 0 \) (tránh chia cho 0) và \( x \) là số nguyên.

- **Nếu \( k = 0 \)**: \( x = 2 \) (không hợp lệ vì ĐKXĐ)
- **Nếu \( k = 1 \)**: \( x \) không xác định (không hợp lệ)
- **Nếu \( k = 2 \)**: \( x = 6 \)
- **Nếu \( k = -1 \)**: \( x = 0 \) (hợp lệ)
- **Các giá trị khác cho k sẽ tương tự cho các số nguyên khác...**

Tóm lại, ta lựa chọn các giá trị của \( k \) và xem \( x = \frac{2(k+1)}{1-k} \).

Các giá trị nguyên \( k \) như 1, 2, 3, và lấy các giá trị khác để thấy các giá trị nguyên cho \( x \):
- Giá trị nguyên có thể là \( x = 0 \) hoặc \( x = 6 \).

### Kết luận:

- ĐKXĐ là \( x \neq -2, x \neq 2 \).
- Giá trị của \( A \) khi \( x = -3 \) là \( 5 \).
- Các giá trị nguyên \( x \) để \( A \) → \( 0, 6, \) ... (có thể tính thêm cho các k khác).
2
0
cừu
06/01 19:57:26
+4đ tặng

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
2
0
Quỳnh
06/01 19:57:29
+3đ tặng
A. 
ĐKXĐ: Để biểu thức A xác định, các mẫu thức phải khác 0. Tức là:
x + 2 ≠ 0 ⇒ x ≠ -2
4 - x^2 ≠ 0 ⇒ (2 - x)(2 + x) ≠ 0 ⇒ x ≠ 2 và x ≠ -2
x - 2 ≠ 0 ⇒ x ≠ 2
4x ≠ 0 ⇒ x ≠ 0
Vậy ĐKXĐ của A là: x ≠ -2, x ≠ 2, x ≠ 0.
Rút gọn:
A = ((x-2 - 2x(x+2) + x+2)/((x+2)(x-2))) * ((x-2)^2)/(4x)
= (-2x^2 - 4x)/(x^2 - 4) * (x-2)/(4x)
= (-2x(x+2))/((x+2)(x-2)) * (x-2)/(4x)
= -1/2
B. Tính giá trị của A khi x = -3:
Vì A đã rút gọn được bằng hằng số -1/2 nên giá trị của A không phụ thuộc vào x.
Vậy khi x = -3, A = -1/2.

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×