Bài tập  /  Bài đang cần trả lời

Chứng minh rằng: nếu ba số tự nhiên m, m+k, m+2k đều là các số nguyên tố lớn hơn 3, thì k chia hết cho 6

Chứng minh rằng :nếu ba số tự nhiên m, m+k, m+2k đều là các số nguyên tố lớn hơn 3 thì k chia hết cho 6
Giúp mình với, cảm ơn mn

2 Xem trả lời
Hỏi chi tiết
611
2
1
minh tâm
27/02/2020 09:26:22

Đã gửi 24-07-2014 - 09:32

do m ;m+k ; m+2k là số nguyên tố >3

=> m;m+k;m+2k lẻ

=> 2m+k chẵn =>k⋮⋮ 2

mặt khác m là số nguyên tố >3 

=> m có dạng 3p+1 và 3p+2(p∈∈ N*)

xét m=3p+1

ta lại có k có dạng 3a ;3a+1;3a+2(a∈∈ N*)

với k=3a+1 ta có 3p+1+2(3a+1)=3(p+1+3a) loại vì m+2k là hợp số 

với k=3a+2 => m+k= 3(p+a+1) loại

=> k=3a

tương tự với 3p+2

=> k=3a

=> k⋮3

mà (3;2)=1

=> k⋮6

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
1
0
minh tâm
27/02/2020 12:42:38
cham diem ho
 

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
Gửi câu hỏi
×