cho tam giác ABC nhọn , các đường cao BD và CE cắt nhau tại H . Đường vuông góc AB tại B và đường vuông góc với AC tại C cắt nhau tại K . Gọi M là trung điểm của BC . Chứng minh
a , Chứng minh ADB∼ΔAEC và ΔAED ~ΔACB
b, Chứng minh HE . HC = HD . HB
c, Chứng minh H, M ,K thẳng hàng và góc AED bàngư góc ACB
d, AH cắt BC tại O . Chứng minh : BE . BA + CD . CA = BC2
e, CHứng minh HO/AO + HD/BD + HE/CE= 1
f, chứng minh H là giao điểm các đường phân giác của tam giác ODE
g, cho góc ACB = 45o , gọi P là trung điểm của DC . Từ D kẻ đường thẳng vuông góc với BP tại I và cắt CK tại N . Tìm tỉ số diện tích của tứ giác CPIN và diện tích tam giác DCN
h, tam giác ABC có điềm kiện gì thì tứ giác BHCK là hình thoi ? Hình chữ nhật ?
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |