Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC nhọn nội tiếp đường tròn tâm O, đường cao BE, CF cắt nhau tại H. a) Chứng minh tứ giác AEHF nội tiếp. b) Chứng minh tứ giác BCEF nội tiếp

Cho ΔABC nhọn nội tiếp đường tròn tâm O đường cao BE,CF cắt nhau tại H.
a) CM:tứ giác AEHF nội tiếp
b) CM:tứ giác BCEF nội tiếp
c) Kẻ >2 12
1 Xem trả lời
Hỏi chi tiết
804
1
0
Thiên Thiên Ái
20/10/2017 13:15:46
a) xét tứ giác AEHF có
góc AEH =90( do BE là đường cao của tam giác ABC)\
góc AFH =90(do CF là đường cao của tam giác ABC)
=> ^AEH+^AFH=180
=> tứ giác AEHF nội tiếp đường tròn đường kính AH(do tổng hai góc đối =180)
b) xét tứ giác BCEF có
^BEC=90(do BE là .....)
^ CFB=90( do CF là .....)
=> ^BEC=^CFB=90
=> tứ giác BCEF nội tiếp đường trion đường kính BC(do hai góc bằng nhau cùng chắn 1 cung)

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×