LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Nêu cách giải bất phương trình

12 trả lời
Hỏi chi tiết
1.533
0
1
Thời Phan Diễm Vi
09/07/2020 19:09:39
+5đ tặng

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
0
1
Thời Phan Diễm Vi
09/07/2020 19:10:32
+4đ tặng
7
0
7
0
0
1
0
1
Thời Phan Diễm Vi
09/07/2020 19:11:58
3.4. Bất phương trình vô tỷ và cách giải

Đây là một trong những dạng khó nhất của bất phương trình. Những phương trình này thường không được giải theo một quy tắc nào cả.

Bạn có thể áp dụng một số ứng dụng của chương khảo sát hàm số vào để giải bất phương trình dạng này. Ngoài ra có thể nhân liên hợp và đặt ẩn phụ để có thể tìm ra được khoảng nghiệm chính xác.

Trường hợp gặp bất phương trình vô tỷ,bạn cần phân tích kỹ đặc điểm của bài tập để tìm ra được hướng giải bất phương trình. Khi luyện tập nhiều, bạn sẽ phản xạ nhanh hơn với dạng bài này. Đây là một trong những câu phân loại học sinh của đề thi đại học, đòi hỏi tư duy cao ở học sinh.

7
0
6
0
0
1
Thời Phan Diễm Vi
09/07/2020 19:12:29
Bất phương trình chứa căn và cách giải

Khi giải bất phương trình chứa căn, các bạn cần phải lưu ý một số về điều kiện xác định của căn thức . Đây là một trong những lưu ý quan trọng khi bạn thực hiện giải bất phương trình chứa căn.

Cách giải phổ biến nhất của bất phương trình dạng này thường là nhân với liên hợp để đưa về dạng phương trình bậc hai hoặc phương trình cơ bản. Ngoài ra, một số trường hợp bất phương trình chứa căn còn đồng thời là phương trình vô tỷ. Bạn cần phải thử các cách khác nhau mới có thể tìm ra được cách giải đúng
 

0
1
Thời Phan Diễm Vi
09/07/2020 19:12:54
3.6. Bất phương trình mũ và cách giải

Bất phương trình chứa mũ cao thường có thể áp dụng phương pháp khảo sát hàm số và phân tích đa thức thành nhân tử. Đây là một dạng phương trình khó và yêu cầu các bạn phải có sự quan sát, phân tích cẩn thận.

3.7. Bất phương trình logarit

Muốn giải tốt bất phương trình logarit, các bạn cần phải thành thạo các quy tắc của về logarit, mũ để có thể áp dụng vào tìm tập nghiệm của bất phương trình. Dạng bất phương trình này thường được đưa về phương trình mũ để tìm ra tập nghiệm

3.8. Bất phương trình chứa dấu giá trị tuyệt đối

Khi bất phương trình có dấu giá trị tuyệt đối, bạn cần phải nắm rõ các quy tắc về dấu giá  trị tuyệt đối để có thể bỏ dấu giá trị tuyệt đối và tìm ra nghiệm đúng của bất phương trình. Dạng bài này thường không quá khó, xuất hiện chủ yếu ở các đề thi và đề kiểm tra đại trà

3.9. Bất phương trình chứa tham số

Đây là một dạng bài tập khó, và xuất hiện khá nhiều trong những câu phân loại học sinh của các đề thi trung học phổ thông quốc gia. Các bạn cần nắm chắc kiến thức về chương khảo sát hàm số để có thể làm tốt dạng bài này.

0
0
Con Káo... mệt rồi.
09/07/2020 19:18:46
Giải bất phương trình bậc 1
Cho hàm số f(x)=ax+b>0 (a khác 0)
Ta có thể dễ dàng tính được nghiệm của phương trình x>-ba
Bất phương trình bậc hai và cách giải
Bất phương trình bậc hai là một dạng phổ biến trong các đề thi đại trà. Đối với bất phương trình này, bạn cần phải đưa bất phương trình dạng f(x)>g(x) về dạng: ax2+bx+c>0
Khi đó, bạn phân tích tam thức bậc hai thành nhân tử và tìm khoảng nghiệm của bất phương trình trên bảng xét dấu. Bạn có thể nhớ quy tắc “ trong trái- ngoài cùng” để áp dụng khi tìm khoảng nghiệm của bất phương trình này.
Với bất phương trình: ax2+bx+c>0 (a khác 0)
Ta tính: =b2-4ac

Trường hợp 1: Nếu Δ > 0 thì phương trình có 2 nghiệm x1 và x2 (x1<x2)

Khi đó ta có:

  • a>0 phương trình có tập nghiệm là tất cả các phần tử nhỏ hơn hoặc bằng x1 và lớn hơn hoặc bằng x2 (−∞;x1)∪(x2;+∞)
  • a<0 tập hợp nghiệm của phương trình là các phần tử lớn hơn hoặc bằng x1 và nhỏ hơn hoặc bằng x2 (x1;x2)

Trường hợp 2: Nếu Δ = 0

  • a>0 phương trình có nghiệm duy nhất là x=-b2a
  • a<0 phương trình vô nghiệm

Trường hợp 3: Nếu Δ < 0

  • a>0 phương trình có nghiệm với mọi x thuộc tập hợp số thực xϵRxϵR
  • a<0 phương trình vô nghiệm
0
0
Con Káo... mệt rồi.
09/07/2020 19:19:07
4. Bất phương trình vô tỷ và cách giải

Đây là một trong những dạng khó nhất của bất phương trình. Những phương trình này thường không được giải theo một quy tắc nào cả.

Bạn có thể áp dụng một số ứng dụng của chương khảo sát hàm số vào để giải bất phương trình dạng này. Ngoài ra có thể nhân liên hợp và đặt ẩn phụ để có thể tìm ra được khoảng nghiệm chính xác.

Trường hợp gặp bất phương trình vô tỷ,bạn cần phân tích kỹ đặc điểm của bài tập để tìm ra được hướng giải bất phương trình. Khi luyện tập nhiều, bạn sẽ phản xạ nhanh hơn với dạng bài này. Đây là một trong những câu phân loại học sinh của đề thi đại học, đòi hỏi tư duy cao ở học sinh.

5. Bất phương trình chứa căn và cách giải

Khi giải bất phương trình chứa căn, các bạn cần phải lưu ý một số về điều kiện xác định của căn thức . Đây là một trong những lưu ý quan trọng khi bạn thực hiện giải bất phương trình chứa căn.

Cách giải phổ biến nhất của bất phương trình dạng này thường là nhân với liên hợp để đưa về dạng phương trình bậc hai hoặc phương trình cơ bản. Ngoài ra, một số trường hợp bất phương trình chứa căn còn đồng thời là phương trình vô tỷ. Bạn cần phải thử các cách khác nhau mới có thể tìm ra được cách giải đúng

 

6. Bất phương trình mũ và cách giải

Bất phương trình chứa mũ cao thường có thể áp dụng phương pháp khảo sát hàm số và phân tích đa thức thành nhân tử. Đây là một dạng phương trình khó và yêu cầu các bạn phải có sự quan sát, phân tích cẩn thận.

7. Bất phương trình logarit

Muốn giải tốt bất phương trình logarit, các bạn cần phải thành thạo các quy tắc của về logarit, mũ để có thể áp dụng vào tìm tập nghiệm của bất phương trình. Dạng bất phương trình này thường được đưa về phương trình mũ để tìm ra tập nghiệm

8. Bất phương trình chứa dấu giá trị tuyệt đối

Khi bất phương trình có dấu giá trị tuyệt đối, bạn cần phải nắm rõ các quy tắc về dấu giá  trị tuyệt đối để có thể bỏ dấu giá trị tuyệt đối và tìm ra nghiệm đúng của bất phương trình. Dạng bài này thường không quá khó, xuất hiện chủ yếu ở các đề thi và đề kiểm tra đại trà

9. Bất phương trình chứa tham số

Đây là một dạng bài tập khó, và xuất hiện khá nhiều trong những câu phân loại học sinh của các đề thi trung học phổ thông quốc gia. Các bạn cần nắm chắc kiến thức về chương khảo sát hàm số để có thể làm tốt dạng bài này.

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Trắc nghiệm Toán học Lớp 9 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư