Cho tam giác ABC cân tại A(AB<BC). Kẻ BD vuông góc với AC, CE vuông góc với AB. Giao điểm của BD và CE là H chứng minh: a) tam giác ABD=tam giác ACE b)AH là trung trực của BC c) ED//BC d) AH>HC
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a/ Xét t/g vuông: t/g ABD và t/g ACE có:
AB = AC (gt)
Aˆ:chungA^:chung
=> t/g ABD = t/g ACE (cạnh huyền-góc nhọn)
=> BD = CE
b/ Vì AB = AC => t/g ABC cân tại A
=> ABCˆ=ACBˆABC^=ACB^
Xét 2 t/g vuông: t/g BEC và t/g CDB có:
BD = CE (ý a)
ABCˆ=ACBˆ(cmt)ABC^=ACB^(cmt)
=> t/g BEC = t/g CDB (cạnh góc vuông - góc nhọn kề)
=> BE = CD
Xét t/g OEB và t/g ODC có:
OEBˆ=ODCˆ=90o(gt)OEB^=ODC^=90o(gt)
BE = CD (cmt)
ABDˆ=ACEˆABD^=ACE^ (2 góc tương ứng do t/g ABD = t/g ACE)
=> t/g OEB = t/g ODC (g.c.g)
c/ xét t/g AOB và t/g AOC có:
AO: cạnh chung
AB = AC (gt)
OB = OC (2 cạnh tương ứng do t/g OEB = t/g ODC)
=> t/g AOB = t/g AOC (c.c.c)
=> OABˆ=OACˆOAB^=OAC^ (2 cạnh tương ứng)
=> AO là tia p/g của góc BAC
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |