LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Nêu các hằng đẳng thức đáng nhớ

nêu các hằng dẳng thức đabgs nhớ

9 trả lời
Hỏi chi tiết
1.035
0
0
Đặng Thu Trang
28/09/2020 18:14:53
+5đ tặng
  • Bình phương của một tổng.
  • Bình phương của một hiệu.
  • Hiệu của hai bình phương.
  • Lập phương của một tổng.
  • Lập phương của một hiệu.
  • Tổng của hai lập phương.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
1
0
doãn thu hằng
28/09/2020 18:15:22
+4đ tặng
0
0
Đặng Thu Trang
28/09/2020 18:15:36
+3đ tặng
Công thức về 7 hằng đẳng thức
1. Bình phương của một tổng

(A + B)2 = A2 + 2AB + B2

Giải thích: Bình phương của một tổng bằng bình phương của số thứ nhất cộng với hai lần tích của số thứ nhất nhân với số thứ hai, cộng với bình phương của số thứ hai

* Ví dụ Bài 16 trang 11 sgk toán 8 tập 1: Viết dưới dạng bình phương của 1 tổng hoặc 1 hiệu

a) x2 + 2x + 1 = (x)2 + 2.(x).(1) + (1)2 = (x+1)2

b) 9x2 + y2 + 6xy = 9x2 + 6xy + y2 = (3x)2 + 2.(3x).(y) + (y)2 = (3x+y)2

2. Bình phương của một hiệu

  (A – B)2 = A2 – 2AB + B2

Giải thích: Bình phương của một hiệu bằng bình phương của số thứ nhất trừ đi hai lần tích của số thứ nhất nhân số thứ hai sau đó cộng bình phương với số thứ hai.

*  Ví dụ Bài 16 trang 11 sgk toán 8 tập 1: Viết dưới dạng bình phương của 1 tổng hoặc 1 hiệu

c) 25a2 + 4b2 – 20ab = 25a2 – 20ab + 4b2 = (5a)2 – 2.(5a).(2b) + (2b)2 = (5a+2b)2

 

3. Hiệu hai bình phương

  A2 – B2 = (A – B)(A + B)

Giải thích: Hiệu hai bình phương của hai số bằng tổng hai số đó nhân với hiệu hai số đó.

* Ví dụ: Viết dưới dạng tích biểu thức: 4x2 – 9

* Lời giải:

– Ta có: 4x2 – 9 = (2x)2 – (3)2 = (2x-3)(2x+3)

Xem thêm:  Công thức tính thể tích hình lập phương, hình hộp chữ nhật, hình cầu, hình nón, hình trụ tròn...
4. Lập phương của một tổng

 (A + B)3 = A3 + 3A2B + 3AB2 + B3

Giải thích: Lập phương của một tổng hai số bằng lập phương của số thứ nhất cộng với ba lần tích bình phương số thứ nhất nhân số thứ hai cộng với ba lần tích số thứ nhất nhân với bình phương số thứ hai cộng với lập phương số thứ hai.

*  Ví dụ Bài 26 trang 14 sgk toán 8 tập 1: Tính

a) (2x2+3y)3 =(2x2)3 + 3(2x2)2.(3y) + 3(2x2).(3y)2 + (3y)3 = 8x6 + 36x4y + 54x2y2 + 27y3

5. Lập phương của một hiệu

(A – B)3 = A3 – 3A2B + 3AB2 – B3

Giải thích: Lập phương của một hiệu hai số bằng lập phương của số thứ nhất trừ đi ba lần tích bình phương của số thứ nhất nhân với số thứ hai cộng với ba lần tích số thứ nhất nhân với bình phương số thứ hai trừ đi lập phương số thứ hai

*  Ví dụ Bài 26 trang 14 sgk toán 8 tập 1: Tính

 

6. Tổng hai lập phương

  A3 + B3 = (A + B)(A2 – AB + B2)

Giải thích: Tổng của hai lập phương hai số bằng tổng của hai số đó nhân với bình phương thiếu của hiệu hai số đó

* Ví dụ: Viết dưới dạng tích x3 + 64

x3 + 64 = x3 + 43 = (x+4)(x2-4x+42) = (x+4)(x2-4x+16)

7. Hiệu hai lập phương

  A3 – B3 = (A – B)(A2 + AB + B2)

Giải thích: Hiệu của hai lập phương của hai số bằng hiệu hai số đó nhân với bình phương thiếu của tổng của hai số đó.

* Ví dụ: Viết dưới dạng tích 8x3 – y3

 8x3 – y3 = (2x)3 – y3 = (2x-y)[(2x)2 – (2x).y + y2] = (2x-y)(4x2 + 2xy + y2)

* Chú ý: a+b= -(-a-b) ; (a+b)2= (-a-b)2  ; (a-b)2= (b-a)2 ; (a+b)3= -(-a-b)3 ; (a-b)3=-(-a+b)3

Các dạng bài toán áp dụng 7 hằng đẳng thức

Dạng 1 : Tính giá trị của biểu thức

Ví dụ: Tính giá trị của biểu thức : A = x2 – 4x + 4 tại x = -1

* Lời giải.

– Ta có : A = x2 – 4x + 4 =  x2 – 2.x.2 + 22 = (x – 2)2

– Tại x = -1 : A = ((-1) – 2)2=(-3)2= 9

⇒ Kết luận: Vậy tại x = -1 thì A = 9

Dạng 2 : Chứng minh biểu thức A không phụ thuộc vào biến

 Ví dụ: Chứng minh biểu thức sau không phụ thuộc vào x: A = (x – 1)2 + (x + 1)(3 – x)


Xem thêm:  Bảng chữ cái Tiếng Trung chuẩn & đầy đủ nhất

* Lời giải.

– Ta có: A =(x – 1)2 + (x + 1)(3 – x) = x2 – 2x + 1 – x2 + 3x + 3 – x = 4 : hằng số không phụ thuộc vào biến x.

Dạng 3 : Tìm giá trị nhỏ nhất của biểu thức

 Ví dụ: Tính giá trị nhỏ nhất của biểu thức: A = x2 – 2x + 5

* Lời giải:

– Ta có : A = x2 – 2x + 5 = (x2 – 2x + 1) + 4 = (x – 1)2 + 4

– Vì (x – 1)2 ≥ 0 với mọi x.

⇒ (x – 1)2 + 4 ≥ 4 hay A ≥ 4

– Vậy giá trị nhỏ nhất của A = 4, Dấu “=” xảy ra khi : x – 1 = 0 hay x = 1

⇒ Kết luận GTNN của A là: Amin = 4 ⇔ x = 1

Dạng 4 : Tìm giá trị lớn nhất của biểu thức

Ví dụ: Tính giá trị lớn nhất của biểu thức: A = 4x – x2

* Lời giải:

– Ta có : A = 4x – x2 = 4 – 4 + 4x – x2 = 4 – (4 – 4x + x2) = 4 – (x2 – 4x + 4) = 4 – (x – 2)2

– Vì (x – 2)2 ≥ 0 với mọi x ⇔ -(x – 2)2 ≤ 0 với mọi x

⇔  4 – (x – 2)2 ≤ 4 [cộng 2 vế với 4]

⇔ A ≤ 4 Dấu “=” xảy ra khi : x – 2 = 0 hay x = 2

⇒ Kết luận GTLN của A là: Amax = 4 ⇔ x = 2.

Dạng 5 : Chứng minh đẳng thức bằng nhau

 Ví dụ: Chứng minh đẳng thức sau đúng: (a + b)3 – (a – b)3 = 2b(3a2 + b2)

* Lời giải:

– Đối với dạng toán này chúng ta biến đổi VT = VP hoặc VT = A và VP = A

– Ta có: VT = (a + b)3 – (a – b)3

= (a3 + 3a2b + 3ab2 + b3) – (a3 – 3a2b + 3ab2 – b3)

= a3 + 3a2b + 3ab2 + b3 – a3 + 3a2b – 3ab2 + b3

= 6a2b + 2b3

= 2b(3a2 + b2) = VP (đpcm).

⇒ Kết luận, vậy : (a + b)3 – (a – b)3 = 2b(3a2 + b2)

• Dạng 6 : Chứng minh bất đẳng thức

– Biến đổi bất đẳng thức về dạng biểu thức A ≥ 0 hoặc A ≤ 0. Sau đó dùng các phép biến đổi đưa A về 1 trong 7 hằng đẳng thức.

Ví dụ: Chứng minh biểu thức B nhận giá trị âm với mọi giá trị của biến x, biết: B = (2-x)(x-4)-2


Xem thêm:  Công thức chu vi diện tích hình tam giác đầy đủ các loại

* Lời giải: 

– Ta có: B = (2-x)(x-4) – 1 = 2x – 8 – x2 + 4x – 2 = -x2 + 6x – 9 – 1 = -(x2 – 6x + 9) – 1 = -(x-3)2 – 1

– Vì (x-3)2 ≥ 0 ⇔ -(x-3)2 ≤ 0 ⇒ -(x-3)2 – 1 ≤ -1 < 0 với mọi x,

Dạng 7: Phân tích đa thức thành nhân tử

 Ví dụ 1:Phân tích đa thức sau thành nhân tử: A = x2 – 4x + 4 – y2

* Lời giải:

– Ta có : A = x2 – 4x + 4 – y2 [để ý x2 – 4x + 4 có dạng hằng đẳng thức]

= (x2 – 4x + 4) – y2  [nhóm hạng tử]

= (x – 2)2 – y2   [xuất hiện đẳng thức số A2 – B2]

= (x – 2 – y )( x – 2 + y)

⇒ A = (x – 2 – y )( x – 2 + y)

 Ví dụ 2: phân tính A thành nhân tử biết: A = x3 – 4x2 + 4x

= x(x2 – 4x + 4)

= x(x2 – 2.2x + 22)

= x(x – 2)2

 Ví dụ 3: Phân tích B thành nhân tử biết: B = x 2 – 2xy – x + 2y

= (x 2– x) + (2y – 2xy)

= x(x – 1) – 2y(x – 1)

= (x – 1)(x – 2y)

 Ví dụ 4:  Phân tích C thành nhân tử biết: C = x2 – 5x + 6

= x2 – 2x – 3x  + 6

= x(x – 2) – 3(x  – 2)

= (x – 2)(x – 3)

• Dạng 8: Tìm giá trị của x

Ví dụ:Tìm giá trị củ x biết: x2( x – 3) – 4x + 12 = 0

* Lời giải.

x2 (x – 3) – 4x + 12 = 0

⇔ x2 (x – 3) – 4(x – 3) = 0

⇔ (x – 3) (x2 – 4) = 0

⇔ (x – 3)(x – 2)(x + 2) = 0

⇔ (x – 3) = 0 hoặc (x – 2) = 0 hoặc (x + 2) = 0

⇔ x = 3 hoặc x = 2 hoặc x = –2

⇒ Kết luận, vậy nghiệm : x = 3; x = 2; x = –2

0
0
NoName.1029243
28/09/2020 18:16:08
+2đ tặng
  1. Bình phương của 1 tổng: (a + b)2 = a2 + 2ab + b2 = (a - b)2 + 4ab
  2. Bình phương của 1 hiệu: (a - b)2 = a2 - 2ab + b2 = (a + b)2 - 4ab
  3. Hiệu 2 bình phương: a2 - b2 = (a - b)(a + b)
  4. Lập phương của 1 tổng: (a + b)3 = a3 + 3a2b + 3ab2 + b3
  5. Lập phương của 1 hiệu: (a - b)3 = a3 - 3a2b + 3ab2 - b3
  6. Tổng 2 lập phương: a3 + b3 = (a + b)(a2 - ab + b2) = (a + b)3 - 3a2b - 3ab2 = (a + b)3 - 3ab(a + b)
  7. Hiệu 2 lập phương: a3 - b3 = (a - b)(a2 + ab + b2) = (a - b)3 + 3a2b - 3ab2 = (a - b)3 + 3ab(a - b)
0
0
Đặng Thu Trang
28/09/2020 18:16:10
+1đ tặng
  • Bình phương của một hiệu.
  • Hiệu của hai bình phương.
  • Lập phương của một tổng.
  • Lập phương của một hiệu.
  • Tổng của hai lập phương.
0
1
Mai Thy
28/09/2020 18:16:41
Các hằng đẳng thức
  1. Bình phương của 1 tổng: (a + b)2 = a2 + 2ab + b2 = (a - b)2 + 4ab
  2. Bình phương của 1 hiệu: (a - b)2 = a2 - 2ab + b2 = (a + b)2 - 4ab
  3. Hiệu 2 bình phương: a2 - b2 = (a - b)(a + b)
  4. Lập phương của 1 tổng: (a + b)3 = a3 + 3a2b + 3ab2 + b3
  5. Lập phương của 1 hiệu: (a - b)3 = a3 - 3a2b + 3ab2 - b3
  6. Tổng 2 lập phương: a3 + b3 = (a + b)(a2 - ab + b2) = (a + b)3 - 3a2b - 3ab2 = (a + b)3 - 3ab(a + b)
  7. Hiệu 2 lập phương: a3 - b3 = (a - b)(a2 + ab + b2) = (a - b)3 + 3a2b - 3ab2 = (a - b)3 + 3ab(a - b)
2
0
1
1
Mai Thy
28/09/2020 18:17:47
Các hệ thức liên quan
  1. (a + b + c)3 = a3 + b3 + c3 + 3(a + b)(b + c)(a + c)
  2. a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - ab - bc - ac)
  3. (a - b - c)2 = a2 + b2 + c2 - 2ab + 2bc - 2ac
  4. (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ac
  5. (a + b - c)2 = a2 + b2 + c2 + 2ab - 2bc - 2ac
1
0
Phạm Mai Anh
28/09/2020 18:23:38

1. Bình phương của 1 tổng sẽ bằng bình phương của số thứ 1 cộng với hai lần tích của số thứ nhất với số thứ hai cộng bình phương số thứ hai

2. Bình phương của 1 hiệu sẽ bằng bình phương của số thứ 1 trừ 2 lần tích số thứ nhất với số thứ 2 cộng với bình phương số thứ 2.

3. Hiệu của 2 bình phương sẽ bằng tích của tổng 2 số với hiệu 2 số.

4. Lập phương của 1 tổng sẽ bằng với lập phương số thứ 1 + 3 lần tích bình phương số thứ 1 với số thứ 2 + 3 lần tích số thứ 1 với bình phương số thứ 2 + lập phương số thứ 2.

5. Lập phương của 1 tổng sẽ bằng với lập phương số thứ 1 -3 lần tích bình phương số thứ 1 với số thứ 2 + 3 lần tích số thứ 1 với bình phương số thứ 2 – lập phương số thứ 2.

6. Tổng hai lập phương sẽ bằng tích giữa tổng 2 số với bình phương thiếu của 1 hiệu.

7. Hiệu của 2 lập phương sẽ bằng với tích giữa hiệu hai số với bình phương thiếu của 1 tổng.

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập Toán học Lớp 8 mới nhất
Trắc nghiệm Toán học Lớp 8 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư