Cho tam giác ABC, trên cạnh AC lấy điểm M sao cho ABM = ACB. Từ A kẻ AH vuông góc với BC (H thuộc BC), AK vuông góc với BM (K thuộc BM).
a) Chứng minh tam giác ABM đồng dạng với tam giác ACB.
b) Chứng minh: AB.AK = AM.AH.
c) Chứng minh: Diện tích tam giác AHB gấp 4 lần diện tích tam giác AKM (biết AB = 3cm, AC = 6cm).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Xét ΔABMΔABM và ΔACBΔACB có:
ˆAA^ chung
ˆABM=ˆACBABM^=ACB^
Do đó ΔABMΔABM ∽ ΔACBΔACB (g - g)
b) Vì ΔABMΔABM ∽ ΔACBΔACB (cmt)
và ABAC=AMABABAC=AMAB (Đ/n hai tam giác đồng dạng)
⇒AM=AB2AC=224=1(cm)⇒AM=AB2AC=224=1(cm)
c) Vì ΔABMΔABM ∽ ΔACBΔACB (cmt)
⇒ˆAMB=ˆABC⇒AMB^=ABC^
⇒ˆAMK=ˆABH⇒AMK^=ABH^
Xét ΔAHBΔAHB và ΔAKMΔAKM có:
ˆAHB=ˆAKM=900AHB^=AKM^=900 (Vì AH⊥BC,AK⊥BMAH⊥BC,AK⊥BM
ˆABH=ˆAMKABH^=AMK^ (cmt)
Do đó ΔAHBΔAHB ∽ ΔAKMΔAKM (g - g)
Suy ra AHAK=ABAMAHAK=ABAM
⇒AH.AM=AB.AK⇒AH.AM=AB.AK (đpcm)
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |