Trong không gian với hệ tọa độ Oxyz cho \[A\left( {1; - 1;2} \right);\;B\left( {2;1;1} \right)\] và mặt phẳng \[\left( P \right):x + y + z + 1 = 0\]. Mặt phẳng (Q) chứa \[A,B\] và vuông góc với mặt phẳng (P). Mặt phẳng (Q) có phương trình là
Nguyễn Thu Hiền | Chat Online | |
05/09/2024 16:43:55 (Toán học - Lớp 12) |
8 lượt xem
Trong không gian với hệ tọa độ Oxyz cho \[A\left( {1; - 1;2} \right);\;B\left( {2;1;1} \right)\] và mặt phẳng \[\left( P \right):x + y + z + 1 = 0\]. Mặt phẳng (Q) chứa \[A,B\] và vuông góc với mặt phẳng (P). Mặt phẳng (Q) có phương trình là
Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi |
Số lượng đã trả lời:
A. \[ - x + y = 0.\] 0 % | 0 phiếu |
B. \[3x - 2y - z + 3 = 0.\] 0 % | 0 phiếu |
C. \[x + y + z - 2 = 0.\] 0 % | 0 phiếu |
D. \[3x - 2y - z - 3 = 0.\] 0 % | 0 phiếu |
Tổng cộng: | 0 trả lời |
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Trắc nghiệm liên quan
- Trong không gian Oxyz, mặt cầu \[\left( S \right):{x^2} + {y^2} + {z^2} + 2x + 4y - 2z - 3 = 0\] có bán kính bằng (Toán học - Lớp 12)
- Cho khối lăng trụ đứng \[ABC.A'B'C'\] có đáy ABC là tam giác vuông cân tại \[A,BC = 2\sqrt 2 \]. Góc giữa mặt phẳng \[AB'\] và mặt phẳng \[\left( {BCC'B'} \right)\] bằng \[30^\circ \]. Thể tích của lăng trụ đã cho bằng (Toán học - Lớp 12)
- Số nghiệm của phương trình \[{\log _3}\left( {{x^2} + 4x} \right) + {\log _{\frac{1}{3}}}\left( {2x + 3} \right) = 0\] là: (Toán học - Lớp 12)
- Một khối đồ chơi gồm một khối hình trụ (T) gắn chồng lên một khối hình nón (N), lần lượt có bán kính đáy và chiều cao tương ứng là \[{r_1},{h_1},{r_2},{h_2}\] thỏa mãn \[{r_2} = 2{r_1},{h_1} = 2{h_2}\] (hình vẽ). Biết rằng thể tích của khối nón (N) ... (Toán học - Lớp 12)
- Cho hình chóp S.ABCD có đáy là hình vuông cạnh 3a, SA vuông góc với đáy, \[SB = 5a\]. Tính sin của góc giữa cạnh SC và mặt đáy \[\left( {ABCD} \right)\]. (Toán học - Lớp 12)
- Cho \[{\log _a}x = 2,{\log _b}x = 3\] với \[a,b\] là các số thực lớn hơn 1. Tính \[P = {\log _{\frac{a}{{{b^2}}}}}x.\] (Toán học - Lớp 12)
- Cho hàm số \[y = f\left( x \right)\] có đạo hàm \[f'\left( x \right) = \left( {3 - x} \right)\left( {{x^2} - 1} \right) + 2x,\forall x \in \mathbb{R}\]. Hỏi hàm số \[y = f\left( x \right) - {x^2} - 1\] có bao nhiêu điểm cực tiểu? (Toán học - Lớp 12)
- Giá trị nhỏ nhất của hàm số \[y = \frac{1}{4}{x^4} + {x^3} - 2{x^2}\] trên đoạn \[\left[ { - 3;3} \right]\] bằng (Toán học - Lớp 12)
- Hàm số \[y = {\log _2}\left( {{x^2} - 2x} \right)\] đồng biến trên (Toán học - Lớp 12)
- Tập hợp điểm biểu diễn số phức z biết \[\left| {z - \left( {3 - 4i} \right)} \right| = 2.\] (Toán học - Lớp 12)
Trắc nghiệm mới nhất
- Câu nào dưới đây không đúng với doanh nghiệp độc quyền: (Tổng hợp - Đại học)
- Đối với người tiêu dùng thì biện pháp điều tiết độc quyền nào của chính phủ mang lại lợi ích cho họ: (Tổng hợp - Đại học)
- So với giá cả và sản lượng cạnh tranh, nhà độc quyền sẽ định mức giá …… và bán ra số lượng ..... (Tổng hợp - Đại học)
- Một doanh nghiệp độc quyền thấy rằng ở mức sản lượng hiện tại, doanh thu biên bằng 5 và chi phí biến bằng 4. Quyết định nào sau đây sẽ làm tối đa hóa lợi nhuận (Tổng hợp - Đại học)
- Giả sử một công ty độc quyền có MR = 2.400 - 4Q và MC = 22, doanh thu sẽ đạt tối đa khi sản xuất sản lượng: (Tổng hợp - Đại học)
- Trong ngành độc quyền hoàn toàn, doanh thu biện (MR): (Tổng hợp - Đại học)
- Yếu tố nào sau đây được xem là rào cản của việc gia nhập thị trường: (Tổng hợp - Đại học)
- Phân biệt giá cấp một: (Tổng hợp - Đại học)
- Nếu phân biệt giá cấp một: (Tổng hợp - Đại học)
- Đường cầu sản phẩm của một ngành: Q= 1.800 - 200P Ngành này có LẠC không đổi ở mọi mức sản lượng là 1,5. Giá cả và sản lượng thế nào? Nếu phân biệt giá cấp một: (Tổng hợp - Đại học)