Cho hàm số \[y = f\left( x \right)\] có đạo hàm, liên tục trên \[\mathbb{R}\], gọi \[{d_1},{d_2}\] lần lượt là tiếp tuyến của đồ thị hàm số \[y = f\left( x \right)\] và \[y = {x^2}f\left( {2x - 1} \right)\] tại điểm có hoành độ bằng 1. Biết rằng hai đường thẳng \[{d_1},{d_2}\] vuông góc nhau, khẳng định nào sau đây đúng?

Nguyễn Thị Thảo Vân | Chat Online
05/09/2024 16:45:37 (Toán học - Lớp 12)
12 lượt xem

Cho hàm số \[y = f\left( x \right)\] có đạo hàm, liên tục trên \[\mathbb{R}\], gọi \[{d_1},{d_2}\] lần lượt là tiếp tuyến của đồ thị hàm số \[y = f\left( x \right)\] và \[y = {x^2}f\left( {2x - 1} \right)\] tại điểm có hoành độ bằng 1. Biết rằng hai đường thẳng \[{d_1},{d_2}\] vuông góc nhau, khẳng định nào sau đây đúng?

Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi
Số lượng đã trả lời:
A. \[\sqrt 2 < \left| {f\left( 2 \right)} \right| < 2.\]
0 %
0 phiếu
B. \[\left| {f\left( 2 \right)} \right| \le \sqrt 3 .\]
0 %
0 phiếu
C. \[\left| {f\left( 1 \right)} \right| \ge \sqrt 2 .\]
0 %
0 phiếu
D. \[2 \le \left| {f\left( 2 \right)} \right| < 2\sqrt 3 .\]
0 %
0 phiếu
Tổng cộng:
0 trả lời
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Gửi bình luận của bạn tại đây (*):
(Thông tin Email/ĐT sẽ không hiển thị phía người dùng)
*Nhấp vào đây để nhận mã Nhấp vào đây để nhận mã

Trắc nghiệm liên quan

Trắc nghiệm mới nhất

Giải bài tập Flashcard Trò chơi Đố vui Khảo sát Trắc nghiệm Hình/chữ Quà tặng Hỏi đáp Giải bài tập

×
Trợ lý ảo Trợ lý ảo
Gửi câu hỏi
×