Cho phương trình \(\sin 2x - \cos 2x + \left| {\sin x + \cos x} \right| - \sqrt {2{{\cos }^2}x + m} - m = 0.\) Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình có nghiệm thực?
Nguyễn Thị Nhài | Chat Online | |
05/09 22:44:59 (Toán học - Lớp 12) |
6 lượt xem
Cho phương trình \(\sin 2x - \cos 2x + \left| {\sin x + \cos x} \right| - \sqrt {2{{\cos }^2}x + m} - m = 0.\) Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình có nghiệm thực?
Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi |
Số lượng đã trả lời:
A. 9. 0 % | 0 phiếu |
B. 2. 0 % | 0 phiếu |
C. 3. 0 % | 0 phiếu |
D. 5. 0 % | 0 phiếu |
Tổng cộng: | 0 trả lời |
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Trắc nghiệm liên quan
- Cho một mô hình tứ diện đều \(ABCD\) cạnh 1 và vòng tròn thép có bán kính \(R.\) Hỏi có thể cho mô hình tứ diện trên đi qua vòng tròn đó (bỏ qua bề dày của vòng tròn) thì bán kính \(R\) nhỏ nhất gần với số nào trong các số sau? (Toán học - Lớp 12)
- Giả sử \[a,b\] là các số thực sao cho \[{x^3} + {y^3} = a{.10^{3z}} + b{.10^{2z}}\] đúng với mọi số thực dương \[x,y,z\] thỏa mãn \[\log (x + y) = z\] và \[\log ({x^2} + {y^2}) = z + 1\]. Giá trị của \[a + b\] bằng: (Toán học - Lớp 12)
- Biết rằng \[a\] là số thực dương để bất phương trình \[{a^x} \ge 9x + 1\] nghiệm đúng với mọi \[x \in \mathbb{R}\]. Mệnh đề nào sau đây đúng? (Toán học - Lớp 12)
- Gọi \(a\) là số thực lớn nhất để bất phương trình \({x^2} - x + 2 + a\ln \left( {{x^2} - x + 1} \right) \ge 0\) nghiệm đúng với mọi \(x \in \mathbb{R}.\) Mệnh đề nào sau đây đúng? (Toán học - Lớp 12)
- Với \(n\) là số nguyên dương thỏa mãn \(C_n^1 + C_n^2 = 55,\) số hạng không chứa \(x\) trong khai triển của biểu thức \({\left( {{x^3} + \frac{2}{{{x^2}}}} \right)^n}\) bằng (Toán học - Lớp 12)
- Có bao nhiêu giá trị nguyên âm của \(a\) để đồ thị hàm số \(y = {x^3} + \left( {a + 10} \right){x^2} - x + 1\) cắt trục hoành tại đúng một điểm? (Toán học - Lớp 12)
- Cho lăng trụ tam giác đều \(ABC.A'B'C'\) có cạnh đáy bằng \(a.\) Trên các tia \(AA',BB',CC'\) lần lượt lấy \({A_1},{B_1},{C_1}\) cách mặt phẳng đáy \(\left( {ABC} \right)\) một khoảng lần lượt là \(\frac{a}{2},a,\frac{2}.\) Tính góc giữa hai ... (Toán học - Lớp 12)
- Tổng giá trị tất cả các nghiệm của phương trình \({\log _3}x.{\log _9}x.{\log _{27}}x.{\log _{81}}x = \frac{2}{3}\) bằng (Toán học - Lớp 12)
- Cho tứ diện đều \(ABCD\) cạnh \(a.\) Lấy \(N,M\) là trung điểm của \(AB\) và \(AC.\) Tính khoảng cách \(d\) giữa \(CN\) và \(DM.\) (Toán học - Lớp 12)
- Có bao nhiêu giá trị nguyên âm của tham số \(m\) để hàm số \(y = {x^3} + mx - \frac{1}{{5{x^2}}}\) đồng biến trên khoảng \(\left( {0; + \infty } \right)?\) (Toán học - Lớp 12)
Trắc nghiệm mới nhất
- Về vị trí địa lí, Việt Nam nằm ở phía nào của bán đảo Đông Dương?
- Nước ta có chung đường biển với nước nào sau đây?
- HIEUTHUHAI sinh năm bao nhiêu?
- Cho bát giác đều \[ABCDEFGH\] có tâm \[O.\] Phép quay thuận chiều \[135^\circ \] tâm \[O\] biến điểm \[D\] của bát giác đều \[ABCDEFGH\] thành điểm nào? (Toán học - Lớp 9)
- Một lục giác đều và một ngũ giác đều chung cạnh \[AD\] (như hình vẽ). Số đo góc \(BAC\) là (Toán học - Lớp 9)
- III. Vận dụng Cho lục giác đều \[ABCDEF\] tâm \[O.\] Gọi \[M,{\rm{ }}N\] lần lượt là trung điểm của \[EF,{\rm{ }}BD.\] Khẳng định nào sau đây là sai? (Toán học - Lớp 9)
- Cho hình ngũ giác đều \[ABCDE\] tâm \[O\]. Phép quay thuận chiều tâm \[O\] biến điểm \[A\] thành điểm \[E\] thì điểm \[C\] biến thành điểm (Toán học - Lớp 9)
- Cho hình thoi \[ABCD\] có góc \(\widehat {ABC} = 60^\circ \). Phép quay thuận chiều tâm \[A\] một góc \(60^\circ \) biến cạnh \[CD\] thành (Toán học - Lớp 9)
- Cho tam giác đều tâm \[O\]. Số phép quay thuận chiều tâm \[O\] góc α với \[0^\circ \le \alpha < 360^\circ \], biến tam giác trên thành chính nó là > (Toán học - Lớp 9)
- Cho hình vuông tâm \[O\]. Số phép quay thuận chiều tâm \[O\] góc α với \[0^\circ \le \alpha < 360^\circ \], biến hình vuông trên thành chính nó là (Toán học - Lớp 9)